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1 Bird’s eye view

Given the 3D coordinates of the measured points {[xi, yi, zi]T }Ni=1, firstly we compute
the 2D position of each point in the BEV image {[ui, vi]}Ni=1:

ui = int(
xi − xmin

0.2
)

vi = int(
yi − ymin

0.2
)

As there may exist may points with duplicated image position, we choose the points with
the highest intensity. First we sort the points with u and v coordinate. Then the two
pointer technique is used to remove the duplicated positions while recording the highest
intensity of each position. The rotated final BEV image is shown in Fig.1.

Figure 1: BEV image from the velodine point cloud. The highest intensity points are
sampled when multiple points lie within the same bin.
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2 Visualization

2.1 Visualization of 3D Semantic Segmentation on 2D image

Given 3D point cloud in the velodyne coordinate system, we first filter out point cloud
that are behind the camera 0, i.e., only select points whose x coordinate are larger than
0.27. Next, we multiply T cam0 velo to transform homogeneous velodyne to rectified
camera 0 coordinate and further multiply P rect 20 to project the rectified point to
image plane of camera 2. Since we find some projected points are beyond the scope of
the image, we filter out these points. Finally, we use color map to map semantic label
to RGB color for remaining points.

Figure 2: LiDAR point cloud projected on the Cam 2 image along with the predicted
bounding boxes. The point cloud is colored using color map and the predicted pointwise
semantic labels.

From Figure 2, we can see the 3D semantic segmentation result is quite ideal. Objects
belong to different categories are labeled with different colors, for example, the road is
colored magenta and cars are colored blue.

2.2 Visualization of 3D Detection on 2D image

First, for each detected object, we compute the 3D location of 8 bounding box corners
in the camera 0 coordinate: With length, width and height of the bounding box, we
get the position of 8 corners relative to the bottom center before the rotation. Then we
apply rotation R around Y-axis and translation t in Eq 1, where θ is the rotation angle,
[xc, yc, zc] is the 3D location of the bottom center c. Now with the 3D location in camera
0 coordinate, we only need to multiply P rect 20 to project 8 points to image plane of
camera 2 and draw lines between them.

R =


cos(θ) 0 sin(θ) 0

0 1 0 0
− sin(θ) 0 cos(θ) 0

0 0 0 1

 t =


xc
yc
zc
0

 (1)
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The result is shown in Figure 2, we can see that green bounding boxes approximately
crop the target object, in our case, cars. Therefore, the 3D object detection is also
successful.

2.3 Visualization of 3D Semantic Segmentation and Detection in 3D space

To visualize the semantic segmentation, we use the color map to map from semantic
label to corresponding color for each point. To visualize the detection, similar to task
2.2, we first apply relative rotation and translation to get the location of 8 corners in
the camera 0 coordinate. Since in this task, we want to visualize the bounding boxes in
3D velodyne space, we apply the transformation from camera 0 coordinate to velodyne
coordinate, i.e., the inverse of T cam0 velo. Finally, we use to given functions update
and update boxes to plot the final result as shown in Figure 3.

Figure 3: LiDAR point cloud visualized in 3D

We can see that within the camera field-of-view, 2 cars fail to be identified, which
are in the red circles.

3 Laser ID

First, same as task 2.1, we project the 3D point cloud onto camera 2 and filter out
those beyond the image range. For the remaining points, we compute the vertical angle
using the ratio of vertical axis and horizontal axis: z√

x2+y2
, and select the minimum and

maximum to get the true Field of View (FOV). We divide the FOV into 64 equal ranges
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and assign each point into one range according to its angle. After identifying the Laser
IDs, we color them using four alternating colors. The result is displayed in Figure 4.

Figure 4: Visualization of Identified Laser ID, use four alternating colors to indicate the
IDs

We find that most points visually at the same horizontal level are colored with the
same color, though there also exist some small discontinuities between line sections.

4 Remove Motion Distortion

Firsly, the transformations and projection matrixes Tvi, Tiv, Tcv, P20 needed are read and
computed from the calibration results, where ”v”, ”i” and ”c” denotes ”velo”, ”imu”
and ”camera”. Here the transformations and projections T (P ) {destination} {origin}
transform the point from the origin frame to the destination frame by multiplying the
homogeneous coordinates in the origin frame. For example, Tvi means the transformation
matrix that transform the coordinates from the IMU frame to the Lidar frame.

The second step is to compute the relative timestamp of each point measured by
Lidar w.r.t. the timestamp of camera. Given the starting time ts and ending time te of
Lidar scanning, the angular velocity could be compute:

ωl =
2π

te − ts

Besides, the relative horizontal angle from front to each point (from 0 to 2π) could be
computed with:

αi = argtan2(yi,−xi) + π

The relationship between the timestamp and angle of each point are shown in Fig 5.
Given the timestamp of the camera tc, the absolute angle from the first point scanned
at the starting time to front (the point scanned when the camera is triggered) is:

αs =
tc − ts
te − ts

× 2π
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Figure 5: The relationship between the computed horizontal angles and timestamps.
The left and right images show the time and angle of points that are scanned later and
earlier than camera being triggered respectively.

when αi > 2π − αs, the timestamp of the ith point is earlier than the triggered time of
camera, therefore the relative timestamp ti for each point could be computed with:

ti =

{
αi
ωl
, 0 < αi ≤ 2π − αs

αi−2π
ωl

, 2π − αs < αi ≤ 2π

The next step is to compute the relative transformation from each point to the camera
frame, given the relative time ti and the constant velocity vc and angular velocity ωc. If
treating the translation and rotation separately, the transformation is computed with:

θi = ωcti

Ri =

cos(θi) − sin(θi) 0
sin(θi) cos(θi) 0

0 0 1


pi = vcti

Ti =

[
Ri pi
0 1

]
Then the measured points with Lidar {P iv}Ni=1 could be undistorted and projected to

the Cam 2 frame {P ic}Ni=1 with:

P̂ ic = λP20 · Tcv · Tvi · Ti · Tiv · P iv

P ic =
P̂ ic [0 : 2]

P̂ ic [2]

Finally, these points are visualized using the depth color and print projection plt
functions. The original and undistorted images are shown in Fig 6 and Fig 7. Our
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resulting projected point cloud matched well with the objects in the image. For example,
the projected point cloud of the sign coincide well with the corresponding pixels in the
image.

Figure 6: Distorted 3D points without removing distortion. Here the max d parameter
is set to 70.

Figure 7: Undistorted 3D points after removing distortion. Here the max d parameter
is set to 70.

5 Bonus Questions

1. When the eyes are closer to the sensor, not only the intensity of light is higher,
but also wider range of light are absorbed by the eyes, which results in higher risk.

2. For cameras, the wet road looks like a mirror and its reflections will create confusing
mirror images of objects. For LiDAR, the mirror-like surface will reflect the laser
light off the water and away from the sensor, making it difficult to detect the road
surface.

3. If the camera has more distance from the Lidar in the forward direction, then
less Lidar points will be projected to the image plane and more information is
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lost. On the other hand, if the camera are further from the Lidar towards left or
right, then the projected points are more imbalanced in the image plane, which
is also annoying if we need information from both the left and right side. When
the distance is larger, these problems are more severe. Additionally, because when
the Lidar and camera are non-centered, we always need to calibrate the non-zero
extrinsic between the camera and the Lidar to project measured points. The
accuracy of extrinsic will influence the quality of projection. When the camera is
further from the Lidar, the absolute err have less influence on the projection.
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