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0 Introduction

In this exercise, we delve into Multi-Task Learning (MTL) architectures for dense pre-
diction tasks. In particular, for semantic segmentation (i.e., the task of associating each
pixel of an image with a class label, e.g., person, road, car, etc.) and monocular depth
estimation (i.e., the task of estimating the per-pixel depth of a scene from a single im-
age). The dataset we use is ”Miniscapes”, which is a toy dataset of synthetic scenes
in the autonomous driving context, composed of predefined splits with 20000 training
images, 2500 validation, and 2500 test images.

As we are doing Multi-Task Learning, we use SI-logRMSE (scale-invariant log root
mean squared error) and IoU (intersection-over-union) to separately measure the per-
formance of depth estimation and semantic segmentation, and Grader, which is defined
as max (IoU - 50, 0) + max (50 - SI-logRMSE, 0), to measure the final performance.
The higher, the better.

The whole report is structured as follows:
In Section 1, we implement and examine the structure of DeepLabv3+ [2, 1], and

test the influence of hyper-parameters.
In Section 2, we implement the branched architecture based on joint architecture

above and compare their performance.
In Section 3, we add the task distillation module to the branched architecture and

do some comparison.
In Section 4, we further improve the model performance with a series of techniques:

changing the unit of depth measurement, substituting upsampling with up-convolution,
adding skip connection of feature2x, including Squeeze and Excitation layer and other
hyper-parameter tuning.

1 Problem 1. Joint architecture

1.1 Hyper-parameter tuning

1.1.1 Optimizer and LR choice

To compare the influence of optimizers and corresponding learning rates, we logarith-
mically vary the learning rates for both SGD and Adam and the results are shown in
Figure 1, 2 and Table 1, where we can see that: 1. As learning rate keeps increasing, the
final learning performance first increases, then decreases. 2. The best learning rate for
SGD is 0.03, while for Adam is 0.0001, which is a couple of orders of magnitude smaller.
We further show the Grader metric of all trials along the training time in Figure 3,
we find both the training time and final performance for two optimizers under the best
learning rate are similar. Considering that the whole training process of Adam is more
stable than that of SGD, we finally choose the combination of Adam and LR = 0.0001
for later experiments.
Best run name: G4 0406-1956 adam lr 0001 40275
Grader: 43.125, semseg: 69.481, depth: 26.356
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(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 1: Evaluation metrics results of the SGD optimizer with different learning rates.
Red: 0.001, Blue: 0.01 (default), Purple: 0.03 (best), Green: 0.1.

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 2: Evaluation metrics results of the Adam optimizer with different learning rates.
Yellow: 0.00001, Blue: 0.0001 (best), Purple: 0.001, Orange: 0.01.

1.1.2 Batch size

We set batch size to be 2, 4 and 8 and increase the number of epochs proportionally.
From Figure 4a, we see that with larger batch size, the performance increases more
along each step. Since larger batch size means more accurate gradient and more stable
training process. However, we cannot easily conclude that the larger batch size, the
better, taking the computation time into account. From Figure 4b, comparing the trend
of blue and purple lines, we see the learning performance with batch size 4 improves
more during the same time period. Therefore, we pick the batch size 4.
Best run name: G4 0406-1956 adam lr 0001 40275
Grader: 43.125, semseg: 69.481, depth: 26.356

1.1.3 Task weighting

In multi-task learning, to avoid the situation that one task loss overwhelms the other,
we take different weight combinations and select the best from them. The results are
displayed in Figure 5 and more detailed data can be found in Table 2. We see that
from left to right, the weight of segmentation loss is increasing. Since we emphasis
segmentation more, SI-logRMSE, the metric for Depth estimation task increases (worse)
and IoU, the metric for Semantic Segmentation task increases as well (better). Overall,
6:4 balances two losses the best, achieving the highest Grader.
Best run name: G4 0409-0447 adam lr 0001 weight sd 64 6fa7f
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Table 1: Comparison of models with different optimizer and LR settings

Optimizer SGD Adam

LR 0.001 0.01 0.03 0.1 0.00001 0.0001 0.001 0.01

Depth (SI-logRMSE) 33.68 27.596 25.587 26.521 33.372 26.356 27.809 36.664
SemSeg (IoU) 55.312 67.154 70.217 69.677 56.053 69.481 66.42 35.854
Grader 21.632 39.558 44.36 43.156 22.781 43.125 38.611 13.336

Figure 3: Evaluation metric results along training time for two optimizers

Grader: 43.542, semseg: 70.188, depth: 26.645

Table 2: Evaluation Metrics with different task weightings

Task weighting (Seg:Depth) 3:7 4:6 5:5 6:4 7:3 8:2 9:1

Depth (SI-logRMSE) 26.3 26.187 26.356 26.645 27.112 28.019 29.734
SemSeg (IoU) 68.694 69.504 69.481 70.188 70.576 70.313 70.534
Grader 42.394 43.317 43.125 43.542 43.464 42.294 40.8

1.2 Hardcoded hyper-parameters

1.2.1 Initialization with ImageNet weights

The encoder, the backbone of the model framework, is used to extract high-level features
for later task usage. By default, it is randomly initialized. Now we instead initialize it
with the weights pre-trained on the ImageNet dataset. Since ImageNet contains several
million images including daily objects which also appear in our ”Miniscapes” dataset,
our encoder is able to abstract more useful high-level features from the start of the train-
ing. Therefore, the whole model can quickly obtain higher performance, which can be
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(a) Along global steps (b) Along training time

Figure 4: Evaluation metrics results with different batch sizes. Red: 2, Blue: 4 (best),
Purple: 8

Figure 5: Evaluation metric results with different task weightings

seen from the purple and pink lines in Figure 6. It is obvious that the pink line is above
the purple line since the beginning of the training and also gets higher Grader in the end.

Best run name: G4 0409-2042 adam lr 0001 weight sd 64 pretrained 76323
Grader: 47.455, semseg: 73.02, depth: 25.564

1.2.2 Dilated convolutions

A convolutional unit only depends on a local region (patch) of the input, i.e., Receptive
Field (RF). Dilated convolution enlarges the receptive field, meaning the feature can
capture more contextual information, which is crutial for both semantic segmentation
and depth estimation task. For example, if we want to predict the boundary of an ob-
ject, it is important for the model can access to the relevant part of the same object.
Compared with pooling layer that can also increase RF, dilated convolution does not
decrease the resolution. The benefit of using dilated convolution is shown in Table 3 and
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Figure 6: Evaluation metric results with different hardcoded hyper-parameters, Pur-
ple: random initialization + no dilation, Pink: encoder pre-trained on ImageNet + no
dilation, Orange: encoder pre-trained on ImageNet + dilation.

Table 3: Comparison of models with different hardcoded hyper-parameters

Model Depth (SI-logRMSE) SemSeg (IoU) Grader

random initialization + no dilation, 26.645 70.188 43.542
pre-trained + no dilation 25.564 73.020 47.455
pre-trained + dilation 21.833 80.152 58.319

Figure 6, where the orange line is above the pink line a lot during the whole training
process, especially in the end, the Grader increases from 47.455 to 58.319, which verifies
our statement that dilated convolution can improve the performance in our task by in-
creasing the receptive field of features.

Best run name:
G4 0409-2151 1 2b adam lr 0001 weight sd 64 pretrained dilation 07996
Grader: 58.319, semseg: 80.152, depth: 21.833

1.3 ASPP and skip connections

We adopt the idea of DeepLabv3+, which combines the ASPP module with the encoder-
decoder structure, so that it contains rich semantic information from the encoder module
while captures sharper object boundaries using a simple but effective decoder module.
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1.3.1 ASPP module

To handle the problem of segment objects at different scales, we use Atrous Spatial Pyra-
mid Pooling (ASPP) module, which resample features at different scales for accurately
and efficiently classifying regions of an arbitrary scale. Specifically, four parallel atrous
convolutions (same as the dilated convolution we use in Section 1.2.2) with different
atrous rates (1, 3, 6, 9) are applied on top of the feature map. Moreover, to incorporate
global context info, image-level features are extracted by applying global average pool-
ing on the same feature map. Finally, all five feature maps are concatenated along the
channel and passed through a 1x1 convolution.

The detailed implementation can be found in the following code:

class ASPP(torch.nn.Module):

def __init__(self , in_channels , out_channels , rates=(3, 6, 9)):

super ().__init__ ()

modules = []

modules.append(ASPPpart(in_channels ,out_channels ,1,stride=1,

padding=0,dilation=1))

for rate in rates:

modules.append(ASPPpart(in_channels ,out_channels ,3,stride=1,

padding=rate ,dilation=

rate))

modules.append(torch.nn.Sequential(

torch.nn.AdaptiveAvgPool2d ((1,1)),

ASPPpart(in_channels ,out_channels ,1,stride=1, padding=0,

dilation=1)))

self.convs = torch.nn.ModuleList(modules)

self.conv_out = ASPPpart(out_channels*5, out_channels ,

kernel_size=1, stride=1,

padding=0, dilation=1)

def forward(self , x):

res = []

for conv in self.convs:

res.append(conv(x))

# image -level feature , need bilinearly upsample after the global

average pooling

res[-1] = F.interpolate(res[-1], size=x.shape[-2:], mode=’

bilinear ’, align_corners=

True)

res = torch.cat(res , dim=1)

return self.conv_out(res)

1.3.2 Skip connection

To successfully recover object segmentation details, instead of directly bilinearly up-
sampling, we use a decoder, the key part of which is the skip connection. To be more
specific, the feature output of ASPP module are first bilinearly upsampled by a factor
of 4 and then concatenated with the corresponding low-level features from the network
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backbone that have the same spatial resolution. The low-level features used here has
already passed through a 1x1 convolution that reduces number of channels, to prevent
the rich encoder features to overwhelm the ASPP feature. After the concatenation, we
use two 3x3 convolution to refien the features and one 1x1 convolution together with
upsampling to get the final prediction.

The detailed implementation can be found in the following code:

class DecoderDeeplabV3p(torch.nn.Module):

def __init__(self , bottleneck_ch , skip_4x_ch , num_out_ch):

super(DecoderDeeplabV3p , self).__init__ ()

self.features_to_predictions = torch.nn.Conv2d(bottleneck_ch ,

num_out_ch , kernel_size=1,

stride=1)

# 1*1 conv according to the paper , 48 channels has best

performance

self.skip_to_reduced = torch.nn.Conv2d(skip_4x_ch , 48,

kernel_size=1, stride=1,

bias=False)

self.bn1 = torch.nn.BatchNorm2d(48)

self.relu = torch.nn.ReLU(inplace=True)

self.conv3x3_refine_1 = torch.nn.Conv2d(48 + bottleneck_ch ,

bottleneck_ch , kernel_size=3

, stride=1, padding=1, bias=

False)

self.bn2 = torch.nn.BatchNorm2d(bottleneck_ch)

self.conv3x3_refine_2 = torch.nn.Conv2d(bottleneck_ch ,

bottleneck_ch , kernel_size=3

, stride=1, padding=1, bias=

False)

self.bn3 = torch.nn.BatchNorm2d(bottleneck_ch)

def forward(self , features_bottleneck , features_skip_4x):

"""

DeepLabV3+ style decoder

:param features_bottleneck: bottleneck features of scale > 4

:param features_skip_4x: features of encoder of scale == 4

:return: features with 256 channels and the final tensor of

predictions

"""

# 1x1 conv

features_skip_reduced = self.skip_to_reduced(features_skip_4x)

features_skip_reduced = self.bn1(features_skip_reduced)

features_skip_reduced = self.relu(features_skip_reduced)

# upsampling

features_bottleneck_4x = F.interpolate(

features_bottleneck , size=features_skip_4x.shape[2:], mode=’

bilinear ’, align_corners

=False

)

# concat

concat_features = torch.cat(( features_skip_reduced ,
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features_bottleneck_4x),dim=

1)

# refine 1

features_4x = self.conv3x3_refine_1(concat_features)

features_4x = self.bn2(features_4x)

features_4x = self.relu(features_4x)

# refine 2

features_4x = self.conv3x3_refine_2(features_4x)

features_4x = self.bn3(features_4x)

features_4x = self.relu(features_4x)

# predict

predictions_4x = self.features_to_predictions(features_4x)

return predictions_4x , features_4x

1.3.3 Results

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 7: Evaluation metrics results before and after adding ASPP module and skip
connection to the decoder. Orange: before, Purple: after

Table 4: Comparison of models with and without ASPP module and skip connection

Model Depth (SI-logRMSE) SemSeg (IoU) Grader training time

w/o ASPP+skip 21.833 80.152 58.319 4:50
with ASPP+skip 19.787 85.313 65.527 6:45

From Figure 7 and Table 4, we can clearly see that after using the ASPP module
and skip connection structured decoder, although the training time increases, the Grader
increases from 58.319 to 65.527, which shows the effectiveness of ASPP module and skip
connection functioning.

Best run name:
G4 0410-1225 1 3 adam lr 0001 weight sd 64 pretrained dilation aspp adba2
Grader: 65.527, semseg: 85.313, depth: 19.787
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2 Problem 2. Branched architecture

2.1 Implementation

Different from the joint architecture in Section 1, that shares all network components
except the last convolutional layer – to learn both tasks, the branched architecture [4, 6]
in this section only shares the encoder. Task-specific ASPP modules and decoders are
implemented for semantic segmentation and monocular depth estimation, respectively.
As two tasks are related, shared encoder can extract common features while task-specific
ASPP and decoders allow for more targeted training.

The detailed implementation can be found in the following code:

class ModelDeepLabV3PlusBranch(torch.nn.Module):

def __init__(self , cfg , outputs_desc):

super ().__init__ ()

self.outputs_desc = outputs_desc

# get output channels for segmentation and depth map

ch_out_seg = outputs_desc[MOD_SEMSEG]

ch_out_depth = outputs_desc[MOD_DEPTH]

self.encoder = Encoder(

cfg.model_encoder_name ,

pretrained=True ,

zero_init_residual=True ,

replace_stride_with_dilation=(False , False , True))

ch_out_encoder_bottleneck , ch_out_encoder_4x =

get_encoder_channel_counts(

cfg.model_encoder_name)

# create task -specific ASPP and decoders

self.aspp_seg = ASPP(ch_out_encoder_bottleneck , 256)

self.aspp_depth = ASPP(ch_out_encoder_bottleneck , 256)

self.decoder_seg = DecoderDeeplabV3p(256 , ch_out_encoder_4x ,

ch_out_seg)

self.decoder_depth = DecoderDeeplabV3p(256 , ch_out_encoder_4x ,

ch_out_depth)

def forward(self , x):

input_resolution = (x.shape[2], x.shape[3])

features = self.encoder(x)

lowest_scale = max(features.keys())

features_lowest = features[lowest_scale]

# task -specific features and predictions

features_seg = self.aspp_seg(features_lowest)

features_depth = self.aspp_depth(features_lowest)

predictions_4x_seg , _= self.decoder_seg(features_seg ,features[4])
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predictions_4x_depth , _= self.decoder_depth(features_depth ,

features[4])

predictions_1x_seg = F.interpolate(predictions_4x_seg , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

predictions_1x_depth = F.interpolate(predictions_4x_depth , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

out = {}

out[MOD_SEMSEG] = predictions_1x_seg

out[MOD_DEPTH] = predictions_1x_depth

return out

2.2 Results

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 8: Evaluation metrics results of joint architecture and branched architecture.
Purple: joint architecture, Yellow: branched architecture

Table 5: Comparison of joint architecture and branched architecture

Model Depth (SI-logRMSE) SemSeg (IoU) Grader #params training time

Joint 19.787 85.313 65.527 26749396 6:45
Branched 18.099 85.623 67.524 32142356 9:00

From Figure 8 and Table 5, we can see after changing the model from joint archi-
tecture to branched architecture, the Grader slightly increases from 65.527 to 67.524, at
the cost of expanded model size and required computations.

Best run name:
G4 0411-1257 2 adam lr 0001 weight sd 64 pretrained dilation aspp branch 062a5
Grader: 67.524, semseg: 85.623, depth: 18.099
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3 Problem 3. Task distillation

3.1 Implementation

Based on the branched MTL architecture in Section 2, related work [5, 7, 8] proposed
to leverage the initial task predictions to distill information across tasks. In our case,
the first part of the new model is the same as branched architecture. However, instead
of directly using the decoder output as the prediction, we make use of the feature before
the last convolutional layer. For each task, we first get such a feature map from its own
decoder. Then we get the feature map corresponding to the other task and apply self-
attention to it. Finally, we sum up two feature maps as the input of another task-specific
decoder, where we can get the final prediction. In summary, we have four decoders, two
for each task. The idea of such an apparently complex operation is that since two tasks
are closely related, the final feature before the prediction for one task may contain some
useful information for another task. Task distillation can be thought as a mutually
motivated interaction.

The self-attention module has been given. Indeed, it generates an attention map/-
mask and new feature map from the feature map, and element-wise multiply them
together. The attention map determines how important per feature unit is.

The detailed implementation can be found in the following code:

class ModelDeepLabV3PlusBranchAttention(torch.nn.Module):

def __init__(self , cfg , outputs_desc):

super ().__init__ ()

self.outputs_desc = outputs_desc

# get output channels for segmentation and depth map

ch_out_seg = outputs_desc[MOD_SEMSEG]

ch_out_depth = outputs_desc[MOD_DEPTH]

self.encoder = Encoder(

cfg.model_encoder_name ,

pretrained=True ,

zero_init_residual=True ,

replace_stride_with_dilation=(False , False , True),

)

ch_out_encoder_bottleneck , ch_out_encoder_4x , ch_out_encoder_2x =

get_encoder_channel_counts(

cfg.model_encoder_name)

# create task -specific ASPP and decoders

self.aspp_seg = ASPP(ch_out_encoder_bottleneck , 256)

self.aspp_depth = ASPP(ch_out_encoder_bottleneck , 256)

self.decoder_seg_1 = DecoderDeeplabV3p(256 , ch_out_encoder_4x ,

ch_out_encoder_2x ,

ch_out_seg)

self.decoder_depth_1 = DecoderDeeplabV3p(256 , ch_out_encoder_4x ,

ch_out_encoder_2x ,

ch_out_depth)

12



# for info distillation across tasks

self.SA_seg = SelfAttention(128 , 128)

self.SA_depth = SelfAttention(128 , 128)

self.decoder_seg_2 = DecoderDeeplabV3p(128 , ch_out_encoder_4x ,

ch_out_encoder_2x ,

ch_out_seg)

self.decoder_depth_2 = DecoderDeeplabV3p(128 , ch_out_encoder_4x ,

ch_out_encoder_2x ,

ch_out_depth)

def forward(self , x):

input_resolution = (x.shape[2], x.shape[3])

features = self.encoder(x)

lowest_scale = max(features.keys())

features_lowest = features[lowest_scale]

# task -specific features and predictions

features_seg = self.aspp_seg(features_lowest)

features_depth = self.aspp_depth(features_lowest)

predictions_4x_seg_1 , final_features_seg_1 = self.decoder_seg_1(

features_seg , features[4])

predictions_4x_depth_1 , final_features_depth_1 = self.

decoder_depth_1(

features_depth , features[4])

# prediction 1

predictions_1x_seg_1 = F.interpolate(predictions_4x_seg_1 , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

predictions_1x_depth_1 = F.interpolate(predictions_4x_depth_1 ,

size=input_resolution , mode=

’bilinear ’, align_corners=

False)

# self attention

sa_features_seg = self.SA_seg(final_features_seg_1)

sa_features_depth = self.SA_depth(final_features_depth_1)

# distillation

features_input_seg_2 = final_features_seg_1 + sa_features_depth

features_input_depth_2 = final_features_depth_1 + sa_features_seg

predictions_4x_seg_2 , _ = self.decoder_seg_2(features_input_seg_2

, features[4])

predictions_4x_depth_2 , _ = self.decoder_depth_2(

features_input_depth_2 ,

features[4])

# prediction 2
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predictions_1x_seg_2 = F.interpolate(predictions_4x_seg_2 , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

predictions_1x_depth_2 = F.interpolate(predictions_4x_depth_2 ,

size=input_resolution , mode=

’bilinear ’, align_corners=

False)

out = {}

out[MOD_SEMSEG] = [predictions_1x_seg_1 , predictions_1x_seg_2]

out[MOD_DEPTH] = [predictions_1x_depth_1 , predictions_1x_depth_2]

return out

3.2 Results

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 9: Evaluation metrics results of models with and without task distillation. Yellow:
without, Blue: with

Table 6: Comparison of models with and without task distillation

Model Depth (SI-logRMSE) SemSeg (IoU) Grader #params training time

w/o distillation 18.099 85.623 67.524 32142356 9:00
with distillation 16.654 86.246 69.592 37095656 17:06

From Figure 9 and Table 6, we can after adding the task distillation, the Grader
further increases from 67.524 to 69.592, also at the cost of expanded model size. One
thing need to notice is that the training time almost doubles after this change.

Best run name:
G4 0417-2346 3 adam lr 0001 weight sd 64 pretrained dilation aspp distillation resume 00396
Grader: 69.592, semseg: 86.246, depth: 16.654
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4 Problem 4. Further improvement

4.1 Learn depth values in log meters

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 10: Evaluation metrics results of the model of task 1.3, the model using log meters
as units and the model added up-convolution layers in the decoder.

In general, depth values in meters in 2D images do not follow a normal distribution.
Therefore in existing works of monocular depth estimation, log value of depth is widely
used to compute the loss or as target of learning. In this task, we first utilize log meter
as the depth unit of the learning target and modify the normalizing process of data.
The mean and variance of depth compute with this new unit is computed as 2.8936
and 0.8661 respectively. The resulting ground truth distribution of depth in image is
predicted much better compared with the previous unit as is shown in figure 11 and 12.
As is shown in Figure 10(a), after this modification (purple line), the test performance
of depth estimation is largely improved compared with using meter as unit (green).
Therefore the final total grade is also improved.
Best run name:
G4 0423-1844 4 adam lr 0001 weight sd 64 depthlog ao resume resume 12778
Grader: 70.504, semseg: 86.118, depth: 15.614

Figure 11: Distribution of predicted depth with log meter as unit
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Figure 12: Distribution of predicted depth with meter as unit

4.2 Substitute up-sampling with up-convolution and add skip of feature 2x

In [3], up-convolution is applied to decode smaller features to features of larger size in
order to reduce the information loss of direct up-sampling. In this task we also modify
the decoder architectures to include up-convolution layers. The up-convolution layer
use 4 different convolutions to up project the features with double sizes. The detailed
architecture of the decoder is shown in Figure 13. We only upsample the features to the
1/2 size of the original image because more up convolution will result in much larger
model size and more computational cost. With this modification, we improved both the
depth estimation and segmentation performance as is shown in Figure 10 (blue line).
Best run name:
G4 0424-0938 4 adam lr 0001 weight sd 64 depthlog upconv 5268c
Grader: 71.265, semseg: 86.428, depth: 15.163

Figure 13: Decoder with up-convolution layers and skip connection from feature 4x.

The detailed code of the up-projection layer is shown below.

class UpProject(torch.nn.Module):

def __init__(self , in_channel , out_channel):

super(UpProject , self).__init__ ()

self.conv1_ = torch.nn.Sequential(collections.OrderedDict([
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(’conv1’, torch.nn.Conv2d(in_channel , out_channel ,

kernel_size=3)),

(’bn1’, torch.nn.BatchNorm2d(out_channel)),

]))

self.conv2_ = torch.nn.Sequential(collections.OrderedDict([

(’conv1’, torch.nn.Conv2d(in_channel , out_channel ,

kernel_size=(2, 3))),

(’bn1’, torch.nn.BatchNorm2d(out_channel)),

]))

self.conv3_ = torch.nn.Sequential(collections.OrderedDict([

(’conv1’, torch.nn.Conv2d(in_channel , out_channel ,

kernel_size=(3, 2))),

(’bn1’, torch.nn.BatchNorm2d(out_channel)),

]))

self.conv4_ = torch.nn.Sequential(collections.OrderedDict([

(’conv1’, torch.nn.Conv2d(in_channel , out_channel ,

kernel_size=2)),

(’bn1’, torch.nn.BatchNorm2d(out_channel)),

]))

self.ps = torch.nn.PixelShuffle(2)

self.relu = torch.nn.ReLU(inplace=True)

def forward(self , x):

# print(’Upmodule x size = ’, x.size())

x1 = self.conv1_(torch.nn.functional.pad(x, (1, 1, 1, 1)))

x2 = self.conv2_(torch.nn.functional.pad(x, (1, 1, 0, 1)))

x3 = self.conv3_(torch.nn.functional.pad(x, (0, 1, 1, 1)))

x4 = self.conv4_(torch.nn.functional.pad(x, (0, 1, 0, 1)))

x = torch.cat((x1 , x2 , x3 , x4), dim=1)

output = self.ps(x)

output = self.relu(output)

return output

4.3 Skip connection from feature 2x

Based on the up-projection, it is also intuitive to further add skip connection of the
feature2x from the encoder inspired by the U-Net architecture ronneberger2015u, as is
shown in Figure 14. The feature2x is concatenate with the up-projected feature 4x and
further processed with a 3×3 convolution layer to get the final feature 2x. This skip
connection improve the performance for both depth estimation and semantic segmenta-
tion, as is shown in figure 15
Best run name:
G4 0430-0629 adam lr 0001 weight sd 640 pretrained dilation aspp distill depthlog
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Figure 14: Decoder with up-convolution layers as well as skip connections from feature
4x and feature 2x.

(a) Depth (SI-logRMSE) (b) SemSeg (IoU) (c) Grader

Figure 15: Evaluation metrics results of the model added up-convolution layers in the
decoder, the model further added skip connection from feature2x and the model further
added SE layer for task distillation.

skip128 resume sky e29fc
Grader: 71.971, semseg: 86.81, depth: 14.939

4.4 Multi-task distillation with Squeeze And Excitation layer

In [8], a class of methods mentioned for multi-task distillation is to learn the Gate
functions that filter the final features from other tasks before feeding them to the target
task. We also extend the current task distillation framework by:

1. The inputs to SA layers are both the concatenation of the final features of depth
estimation and semantic segmentation. The output channel is the same as the
feature input of the second decoder of each task.

2. The feature output by the SA layer is further processed by a SE residual block to
select useful channels.
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As is shown in Figure 15, we achieved further improvement of the performance mainly
for semantic segmentation.
Best run name:
G4 0501-0920 4 adam lr 0001 weight sd 64 depthlog 2up skip2x sase resume 7d377
Grader: 72.215, semseg: 87.227, depth: 15.013

The entire code for the new decoder is shown below:

class ModelDeepLabV3PlusUpConvSkipSE(torch.nn.Module):

def __init__(self , cfg , outputs_desc):

super ().__init__ ()

self.outputs_desc = outputs_desc

# get output channels for depth and seg

ch_out_seg = outputs_desc[MOD_SEMSEG]

ch_out_depth = outputs_desc[MOD_DEPTH]

self.encoder = Encoder(

cfg.model_encoder_name ,

pretrained=True , # modified to be true

zero_init_residual=True ,

replace_stride_with_dilation=(False , False , True),

)

ch_out_encoder_bottleneck , ch_out_encoder_4x =

get_encoder_channel_counts(

cfg.model_encoder_name)

self.aspp_seg = ASPP(ch_out_encoder_bottleneck , 256)

self.aspp_depth = ASPP(ch_out_encoder_bottleneck , 256)

self.decoder_seg_1 = DecoderDeeplabV3pConv2xSkip(256 ,

ch_out_encoder_4x ,

ch_out_encoder_4x ,

ch_out_seg , 128 , 1)

self.decoder_depth_1 = DecoderDeeplabV3pConv2xSkip(256 ,

ch_out_encoder_4x ,

ch_out_encoder_4x ,

ch_out_depth , 128 , 1)

self.SA_seg = SelfAttention(256 , 128)

self.SA_depth = SelfAttention(256 , 128)

self.SE_seg = SqueezeAndExcitation(128)

self.SE_depth = SqueezeAndExcitation(128)

self.decoder_seg_2 = DecoderDeeplabV3pConv2xSkip(128 ,

ch_out_encoder_4x ,

ch_out_encoder_4x ,

ch_out_seg , 128 , 0)

self.decoder_depth_2 = DecoderDeeplabV3pConv2xSkip(128 ,

ch_out_encoder_4x ,

ch_out_encoder_4x ,

ch_out_depth , 64, 0)
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def forward(self , x):

input_resolution = (x.shape[2], x.shape[3])

features = self.encoder(x)

# Uncomment to see the scales of feature pyramid with their

respective number of

channels.

print(", ".join([f"{k}:{v.shape[1]}" for k, v in features.items()

]))

lowest_scale = max(features.keys())

features_lowest = features[lowest_scale]

# aspp

features_seg = self.aspp_seg(features_lowest)

features_depth = self.aspp_depth(features_lowest)

# decoder 1

predictions_2x_seg_1 , final_features_seg_1 = self.decoder_seg_1(

features_seg , features[4],

features[2])

predictions_2x_depth_1 , final_features_depth_1 = self.

decoder_depth_1(

features_depth , features[4],

features[2])

# prediction 1

predictions_1x_seg_1 = F.interpolate(predictions_2x_seg_1 , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

predictions_1x_depth_1 = F.interpolate(predictions_2x_depth_1 ,

size=input_resolution , mode=

’bilinear ’, align_corners=

False)

# self attention

sa_features_seg = self.SA_seg(torch.cat([final_features_seg_1 ,

final_features_depth_1], dim

=1))

sa_features_depth = self.SA_depth(torch.cat([final_features_seg_1

,final_features_depth_1],

dim=1))

sase_features_seg = self.SE_seg(sa_features_seg) +

sa_features_seg

sase_features_depth = self.SE_depth(sa_features_depth) +

sa_features_depth
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# distillation

features_input_seg_2 = self.relu(final_features_seg_1 +

sase_features_seg)

features_input_depth_2 = self.relu(final_features_depth_1 +

sase_features_depth)

# decoder 2

predictions_2x_seg_2 , _ = self.decoder_seg_2(features_input_seg_2

, features[4], features[2])

predictions_2x_depth_2 , _ = self.decoder_depth_2(

features_input_depth_2 ,

features[4], features[2])

# prediction 2

predictions_1x_seg_2 = F.interpolate(predictions_2x_seg_2 , size=

input_resolution , mode=’

bilinear ’, align_corners=

False)

predictions_1x_depth_2 = F.interpolate(predictions_2x_depth_2 ,

size=input_resolution , mode=

’bilinear ’, align_corners=

False)

out = {}

out[MOD_SEMSEG] = [predictions_1x_seg_1 , predictions_1x_seg_2]

out[MOD_DEPTH] = [predictions_1x_depth_1 , predictions_1x_depth_2]

return out

4.5 Further hyper-parameter tuning

All the previous results are runned with the initially tuned hyper-parameters for 16
epochs Given the final architecture, we further tuned the hyperparameters including
learning rate, batch size and increase number of epochs. Noticing that given same
training time, batch size 4 can give best final performance, we still use 4 as the batch
size instead of increasing it to 8 or 16. We also discovered that smaller learning rate
0.00002 and 0.00005 could give us better performance compared with 0.0001. For data
augmentation, we found that adding random scale and geometric augmentation will
result in much more time cost while achieving worse performance in wthin the same
time, so we elliviate them in this task. For the same reason, we do not substitute more
pooling layers with dilation layers. Several long term trained results are shown in Figure
16. Among them the best result is trained with learning rate 0.00005 for 24 epochs.
It only took 32-33 hours and we believe the performance could further improve if we
trained it for full 36 hours.
Best run name:
G4 0504-1135 4 adam lr 00005 weight sd 64 depthlog 2up skip2x sase full 2a550
Grader: 74.378, semseg: 88.321, depth: 13.943
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Figure 16: Performance curve of the final model with different hyperparameters.
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