
DLAD Homework 3 - Problem 1

Building a 2 Stage 3D Object Detector

Yunke Ao, Kaiyue Shen

July 4, 2021

Contents

1 Introduction 2

2 Compute Recall 2

3 ROI Pooling 2

4 Sample Proposals 3

5 Compute Loss 6

6 Non-maximum Suppression (NMS) 7

7 Training the Network 8

1

1 Introduction

3D object detection plays an essential role in autonomous driving. In this task, we build
a 2 stage 3D object detector. To be more specific, we refine the proposals provided
by the first stage Region Proposal Network (RPN) through a detection pipeline con-
sisting: Recall Computation, ROI Pooling, Sample Proposals, Loss Computation and
Non-maximum Suppression (NMS). Then we train the complete network, which would
be used as the baseline for comparison in Problem 2.

2 Compute Recall

In this task, we implement 3D IoU computation given predicted and target boxes, and
compute the recall of the first stage network proposals for the validation set. The eight
corners are first extracted based on the parameters of boxes. Then the 2D intersection
between boxes in the X-Z plane are calculated using Shapely library. Finally, this in-
tersection is multiplied by the overlap in the Y dimension and divided by the volume
of the union of the 2 boxes. To compute the recall, we calculate IoUs between each
prediction-target pairs and summarize in the matrix, where the rows and columns rep-
resents predictions and columns respectively. The recall is just the ratio between the
column where exists an item larger than the threshold and the column number. Here
the average recall of the validation dataset is 80.1%. It shows that the first stage can
already generate a coarse but meaningful prediction.

In this stage we use recall rather than precision, because for RPN network, there could
exist multiple overlapped proposal that correspond to the same ground truth. While how
many proposals are for the same target is not clear, and it may influence the precision
result, recall is more reliable because the targets do not overlap.

For this task, we achieve the result 80.1/80.1 and duration 22.5/63.7.

3 ROI Pooling

We achieve ROI pooling efficiently. The process with most computational cost is to
select the points of the scene within the increased box region. Instead of computing
each selection condition (range of points in each dimension in the box coordinate) in-
dependently and combining them together, we implement the selection step by step.
Before transformation of points to the box centered coordinate, we first apply a coarse
selection based on a larger square centered at the box center. Then we only compute the
X coordinates of selected points in the box centered frame and select the points within
the enlarged box in X direction. Then among the selected points, we similarly compute
the rotated Y and Z coordinates to further select all the points in the enlarged box. The
code for this part is shown below:

2

transform points to the box coordinate

ry = pred[i,-1]

bx = pred[i, 0]

bz = pred[i, 2]

by = pred[i, 1]

bh = pred[i, 3]

init coarse filter to speedup selection

cond = cond_1[abs(x - bx)+abs(z - bz)<1.415*max_dist[i]]

filter points in the box

y_unrotate = y[cond] - by

cond_y = abs(y_unrotate + bh/2)< bh/2 + delta

cond = cond[cond_y]

z_unrotate = math.sin(ry) * (x[cond] - bx) + math.cos(ry) * (z[

cond] - bz)

#z_unrotate = z_unrotate_all[i, :]

cond_z = abs(z_unrotate) < range_z[i]

cond = cond[cond_z]

x_unrotate = math.cos(ry) * (x[cond] - bx) - math.sin(ry) * (z[

cond] - bz)

cond_x = abs(x_unrotate) < range_x[i]

cond = cond[cond_x]

After this, the selected points are sampled with or without replacement according to the
number of the points. Specifically, if the number of points is larger than the required
number, we sample with replacement. Otherwise, we first take in all selected points and
then sample more points from them with replacement until we get the required number
of points. The same random sampling strategy is used in task 1.3.

With this procedure and careful usage of data types for indexes and variables, we
achieve duration of 30.8/38.4 ms. Results for this task is shown in Figure 1, the ex-
tracted points are all surrounding or inside the proposal boxes.

4 Sample Proposals

From task 1.2, we already get the input of the refinement network. In order to do
supervised learning, we generate the input-output pair for each scene in this task. First,
we compute the IoU matrix as in task 1.1. Then we separate input samples into different
categories, including foreground, easy background and hard background, based on the
criteria in Figure 2. There are two cases. We first perform max operation along the
row of IoU matrix, to find the ground truth (GT) for each input and assign the sample
into certain category based on the IoU value of the input-GT pair. We then perform
max operation along the column of IoU matrix, and take each pair as the additional

3

Figure 1: Example ROI pooling results. They are the first valid proposal from the 1st,
2nd and 3rd frames respectively. The parameters (x, y, z, h, w, l, r) for the three examples
are [3.5176, 1.6643, 11.0931, 1.5604, 1.6181, 3.7449, -1.5691], [1.0739, 1.6274, 20.2643,
1.6843, 1.6877, 4.1997, -1.1749] and [1.1498, 1.7912, 24.3467, 1.562, 1.633. 3.7346, -
1.4909] respectively.

foreground. After this, we put them together and if we are in the training mode, we
move on to the next step, otherwise, we directly output these pairs. In the extra step,
we re-sample proposals under certain rules. You can find details in the following code.

Figure 2: Illustration of how we divide samples into different categories depending on
IoU

If there are only foreground proposals in a scene

if num_easy_bg + num_hard_bg == 0:

sample_mask = random_sample(num_fg , num_samples)

pred_targ_IoU_pair = fg[sample_mask ,:]

If there are only background proposals in a scene

elif num_fg == 0:

pred_targ_IoU_pair = bg_sample_proposals(num_samples ,

bg_hard_ratio , num_easy_bg ,

num_hard_bg , easy_bg ,

hard_bg)

If there are more than 32 foreground samples

elif num_fg > num_fg_sample:

fg_sample_mask = random_sample(num_fg , num_fg_sample)

fg_pred_targ_IoU_pair = fg[fg_sample_mask ,:]

bg_pred_targ_IoU_pair = bg_sample_proposals(num_samples-

4

num_fg_sample , bg_hard_ratio

, num_easy_bg , num_hard_bg ,

easy_bg , hard_bg)

pred_targ_IoU_pair = np.concatenate ((fg_pred_targ_IoU_pair ,

bg_pred_targ_IoU_pair), axis

=0)

else:

bg_pred_targ_IoU_pair = bg_sample_proposals(num_samples-num_fg ,

bg_hard_ratio , num_easy_bg ,

num_hard_bg , easy_bg ,

hard_bg)

pred_targ_IoU_pair = np.concatenate ((fg , bg_pred_targ_IoU_pair),

axis=0)

def bg_sample_proposals(num_needed , bg_hard_ratio , num_easy_bg ,

num_hard_bg , easy_bg , hard_bg):

if num_easy_bg == 0:

sample_mask = random_sample(num_hard_bg , num_needed)

pred_targ_IoU_pair = hard_bg[sample_mask ,:]

elif num_hard_bg == 0:

sample_mask = random_sample(num_easy_bg , num_needed)

pred_targ_IoU_pair = easy_bg[sample_mask ,:]

else:

num_needed_hard = int(num_needed * bg_hard_ratio)

num_needed_easy = num_needed - num_needed_hard

sample_mask_hard = random_sample(num_hard_bg , num_needed_hard)

pred_targ_IoU_pair_hard = hard_bg[sample_mask_hard ,:]

sample_mask_easy = random_sample(num_easy_bg , num_needed_easy)

pred_targ_IoU_pair_easy = easy_bg[sample_mask_easy ,:]

pred_targ_IoU_pair = np.concatenate ((pred_targ_IoU_pair_hard ,

pred_targ_IoU_pair_easy),

axis=0)

return pred_targ_IoU_pair

From Figure 3, you can more intuitively understand the sample proposals. Here, for
visualization, we do not consider the second case: additional foreground got from the
highest IoU for GT. We simply label different proposals with different colors based on
their IoUs. The image on the left is under the training mode so it undergoes the re-
sampling while the one on the right not as it is in the validation/test mode. Compared
them with each other, you can easily see there are more blue boxes than other colors
in the right image, so with our re-sampling scheme, the number of bounding boxes in
different categories are more balanced.

Now, we explain the idea of re-sampling scheme and criteria of category division from
the theoretical point of view. The re-sampling scheme plays an important part in solving
the problem of class imbalance. For example, if we simply random sample from all

5

(a) #bounding box=64 (b) #bounding box=#RPN outputs

Figure 3: Visualization of sample proposals in different modes. Left: train, Right:
val/test. Green: foreground, Red: hard background, Blue: easy background, White:
ground truth, Yellow: others. #Frame=1

proposals, a large amount of data in the final proposal may only belong to the majority.
So that during the classification, the model will tent to predict that class. Also, since
the model hardly see the minority, when do the validation, it cannot generalize well and
will easily fail on that class when doing the regression task. If we don’t sample easy
background proposal at all, we will meet the class imbalance problem as well. Moreover,
the hard background proposal actually contain a lot of points that are also contained in
the foreground proposal. For similar point inputs, the model need to predict different
labels, which makes the training harder. The criteria of category division is also very
important. Now there is a gap between the upper bound of hard background 0.45 and
lower bound of foreground 0.55. If we drop this gap and let 0.5 to be the split point of
background and foreground, there will be two problems. First, samples close to the split
point may have similar IoU but different class, making the training procedure unstable.
Second, if we don’t separate background to be easy ones and hard ones, the model may
work well on easy ones but confuse when meeting the hard ones. But why we match
the ground truth with its highest IoU proposal? The reason behind it is that otherwise
some ground truth bounding box might not be used if every predict in the first stage
has low IoU with them. In reality, it means the missed detection of a car, which might
be dangerous.

5 Compute Loss

We implement two losses for two tasks. For the regression task, we first filter out the
negative samples (with 3D IoU < 0.55) since negative samples are more likely to be the
background and there is no physical meaning predicting the location of the background.
The description of a bounding box contains 7 parameters: (x, y, z) for the center lo-

6

cation, (h,w, l) for the box size, ry for the box orientation, where the box size weigh
more importance. So we separately compute the smooth-L1 loss for the location, size
(multiplied by 3), and rotation and sum them up to get the final regression loss. For the
classification task, we first filter out the samples that are neither positive nor negative
(3D IoU lies in ambiguous section (0.45, 0.6)) to make the training more stable. Then we
label the positive samples with 1 and negative with 0. Finally, we compute the Binary
Cross Entropy (BCE) loss. Our implementation passed the test.

6 Non-maximum Suppression (NMS)

Before directly evaluate the output of the refinement network, we make use of Non-
maximum Suppression Algorithm to remove the highly overlapping bounding boxes.
The algorithm works like this: we have two sets, one holding the prediction before NMS
and one after. First, the former is initialized with outputs of the network and the latter
is empty. Second, we move one with the highest confidence score in the former to the
latter. We accept this prediction because we highly believe in it. Third, we compute its
2D BEV IoU with remaining ones in the former set. If the IoU is larger than the given
threshold, meaning two bounding boxes are highly overlapped and they are likely to
predict the same object. We just keep the one we believe more and remove another from
the former set. We iterate between step 2 and 3 until the former set becomes empty.
The latter is the set we want.

Although we use 2D BEV IoU in this task, we can of course use 3D IoU computed as
the previous task. The thing is our goal is to remove the overlapping bounding boxes.
From our daily experience, most of the time, there is only one car at each position of
the 2D plane - cars are not vertically stacked. Also, in our case, the car must be on the
ground and have similar heights. Therefore, if two bounding boxes have a high 2D BEV
IoU, they are very likely to contain the same object. Using 2D BEV IoU is good enough
to find the redundant boxes. Moreover, compared with 3D IoU, it is more computational
efficient and is easier for us to find a proper threshold.

Figure 4: Loss and precision curves for training the baseline.

7

Figure 5: Scene visualization examples from the beginning, mid-way and end of the
training cycle.

7 Training the Network

In this section we train the network for 35 epochs, in 8.5 h in total. The loss curve and
precision trend is shown in Figure 4. The loss continuously goes down and the precision
increase during the training process until reaching the performance ”e map: 82.18946,
mmap: 73.39667, hmap: 72.52704”. The scene visualization examples through the
training process is shown in Figure 5. It can be seen that at the beginning the proposals
do not overlap well with the targets. At the mid-way of training, many predicted boxes
have better overlaps with the target, while the poses of boxes are still not accurate
enough. At the end of training, most of the predicted boxes have similar pose as the
targets.

8

