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Abstract
In this paper, we study the two-stage point-based 3D object detection problem, where

we focus on improving the refinement network given the first stage RPN output. Our
proposed refinement network improves the performance from three aspects: 1. model
structure: learning global and local spatial feature by introducing MLP and canonical
transformation; 2. loss function: including GIoU loss for regression task; 3. training
scheme: change the optimizer from SGD to Adam. For evaluation metrics, we use mean
average precision (mAP) of three difficulty levels: easy, moderate and hard. The ablation
test proves the effectiveness of our three techniques. The combination of them performs
the best among all difficulty levels.

1 Introduction

In autonomous driving, 3D object detection is one of the most important tasks. Based on
the type of sensors we use to get the data, there are mainly two types of 3D object detection
methods: one leverages relatively mature 2D detection algorithms using 2D images [1, 2],
and the other takes in the 3D point clouds[4, 8, 5, 6]. The latter can be further divided
into one-stage approaches and two-stage ones. Different from one-stage approach that
directly produce the 3D bounding box, two-stage approaches first use Region Proposal
Network (RPN) to generate coarse detection results and refine them in the second stage.
In our work, as we are already given results of the first stage RPN alongside the extracted
features and point cloud data, we focus on improving the performance of the refinement
network.

The baseline method is done in a naive way with many limitations. For network
inputs, it directly concatenates the point coordinates with the first stage decoder features,
which, we think not fully makes use of the information in the point coordinates. For loss
computations, it uses smooth-L1 loss for the regression task, that might not be the best
choice considering that the evaluation metric is IoU-based. For training procedure, it uses
SGD optimizer, which has proven to be less stable or converge slower than other modern
optimizers.

Our contributions come down to the following three aspects:

• We apply MLP and canonical transformation to point coordinates to extract both
global and local spatial features, together with decoder feature from RPN network
to form a more informative feature input.

• We include an extra GIoU loss for the regression task, which is directly related to
the evaluation metric we use and helps to improve the final result.

• We replace the SGD optimizer with Adam, which shows greater effect combined
with two other newly-introduced modules.
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Figure 1: The architecture for the second-stage refinement network. We add two MLP to
extract features from ROI for box refinement, and GIoU loss for better final performance.

2 Methods

In this section, we present our proposed second-stage framework for 3D object detection.
The overall framework is shown in Figure 1, in which our main contribution includes
feature extraction from spatial points for refinement, and adding GIoU loss for better
performance.

2.1 Feature Learning for Box Refinement

In the baseline model, the input of the refinement model is obtained by simply concate-
nating the first stage decoder features with the point coordinates. The dimension of point
coordinates is 3, which is much smaller than that of features, 128. These points are within
the predicted bounding box in the first stage, so that they can provide the information of
a rough location of the target bounding box. That’s why we introduce the MLP module
to increase the dimension of point coordinates.

Moreover, taking the idea from [4], we introduce the canonical transformation (CT) to
transform the spatial points within each proposal from the LiDAR coordinate system to the
canonical coordinate system of the corresponding 3D proposal. The canonical coordinate
system is constructed with the center of the proposal as the origin, heading direction
parallel and perpendicular to the X, Z axis. The advantage of such transformation is to
provide better local spatial features for each proposal, which might help to predict more
accurate size of the bounding box. Again, we use MLP to increase the dimension. One
thing need to note here is that CT removes the depth information, so we append an extra
distance feature, i.e., d(p) =

√
(x(p))2 + (y(p))2 + (z(p))2 to the first stage decoder feature

of point p. Finally, we concatenate decoder features, spatial features w/o CT, spatial
features with CT, and apply a merge layer to get the merged features for the refinement
network.

The advantage of our improvement is that all three sub-features provide useful infor-
mation from different aspects. The decoder features encodes high-level information via
learning for segmentation and proposal generation in the first stage. The spatial features
without and with CT contain the global and local spatial information separately.
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2.2 Including GIoU loss for Regression

In our baseline model, the loss function for box pose regression is the smooth-L1 loss
for poses of boxes. However, the evaluation metrics for prediction during validation and
testing are all based on IoU, rather than the euclidean distance between poses. This
mismatch may cause limited improvement of testing performance even though there is
significant decrease of training loss and validation loss. This phenomenon is also shown
in our experiments in the next section. Therefore we also include GIoU loss [7, 3] in our
loss function for box refinement.

For two shapes A and B, we use C to denote the smallest convex shape that enclosing
both A and B. Then given the 3D IoU between A and B, GIoU is defined by:

GIoU = IoU − VC − UAB

VC
(1)

where UAB = VA + VB − Soverlap × hoverlap and the second item is a generalized metric of
distance between A and B. With all this being defined, the loss we use for training is

L = Lreg + w · LIoU + Lcls (2)

where LIoU = E[1−GIoU(pred, target)] for all the prediction-target pairs with IoU larger
than the threshold.

3 Results

3.1 Implementation Details

Network Architecture. Based on the provided baseline, we add two shared MLP for
spatial points with and without CT, with size [3, 128, 128] and [4, 64, 64] respectively.
Then the extracted features from points with or without CT are merged with the feature
output from Region Proposal network (RPN) using a merge layer with size [320, 128].
Therefore the final feature input to the set abstraction modules also has the same dimen-
sion (128) as before.
The Training Scheme. We use Adam optimizer instead of SGD to train our network.
The learning rate is 0.001, with step-wise decrease at milestones [5, 10, 15, 20, 25, 30] and
decrease factor 0.5. The weight for GIoU loss is set as 0.2, and other hyperparameters are
kept as default.

3.2 Performance on Provided Dataset

As is shown in Figure 2 and Table 1, the performance of our method surpass all other
compared methods. The final validation results for easy, moderate and hard scenes are
84.449, 85.115 and 84.445 respectively, while the testing results are 77.63, 82.38 and 81.27
respectively. These demonstrate the effectiveness of our method.

3.3 Ablation Study

By comparing method 1 and method 2, it is shown in Figure 2 (d)-(e) that even though
the method 2 results in much lower validation loss, the validation performance does not
improve. This proves our statement of mismatch between loss and validation metrics in
section 2. By comparing method 2 and method 3, it can also be seen that the Adam
optimizer improves the performance a lot. After adding GIoU loss, method 4 outper-
forms method 3 for all different scenes, which proves that adding GIoU loss improves the
performance.
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Figure 2: Learning curves for different combinations of methods. (a)-(c): Average preci-
sion performance for easy, moderate and hard scenes. (d)-(e): Training and validation loss
curve for the methods 1 and 2. Red, green, blue and purple curves correspond to method
1-4 in Table 1.

Index MLP GIoU loss Adam APE APM APH

1 × × × 82.189 73.397 72.527
2 X × × 66.595 71.866 70.098
3 X × X 77.048 80.885 80.907
4 X X X 84.449 85.115 84.445

Table 1: Performance of different methods for ablation study. Our proposal surpass all
the remaining combinations.

4 Discussion

We present an architecture that extract features from the local spatial points of ROI to
encode more information for box refinement, and include GIoU loss to reduce the gap
between loss and validation metrics. The whole model is trained using a more efficient
optimizer and finally the performance is largely improved. However, due to the limited
time and resources, we do not try higher weight for GIoU loss to see whether the perfor-
mance could be further improved. Besides, the scheme to including both spatial features
with and without CT could be further simplified, for example, by only include features of
points with CT and also predict the box pose after CT, as is adopted by [4]. With these
further improvement, we believe better performance could be achieved.
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