
Gradual Transition From Model-Based to Model-Free
Actor-Critic Reinforcement Learning

Le Chen, Yunke Ao, Kaiyue Shen, Zheyu Ye
lechen,yunkao,kashen,zheyye@ethz.ch

ABSTRACT
Model-free reinforcement learning methods could achieve very
good performance but typically requires a substantial amount of
data collection for convergence. On the other hand, model-based
methods tend to be more sample efficient but suffer from the bias of
the learned models. In this work, we aim to combine the advantages
of these approaches. We design a model-based learning framework
that is integrated with value learning. By gradually reducing the
planning horizon, it transforms into pure model-free actor-critic
learning as the training goes. The experiments show that, for en-
vironments with relatively stable dynamics and lower dimensions
for action space, our proposed method reaches high performance
faster compared with baselines. The code is publicly available.

1 INTRODUCTION
Reinforcement learning (RL) algorithms is a powerful framework
for robots to acquire a wide range of skills from experience, for
example, playing chess [15], calibrating sensors [2] and so on. RL al-
gorithms could be divided into twomain categories: model-based RL
and model-free RL. Model-free RL algorithms directly optimize the
policy based on the gathered interaction experience, while model-
based ones additionally learn the dynamic and reward functions
of the environment [1]. Both approaches have their advantages
as well as limitations. Generally, model-free RL could handle ar-
bitrary dynamical systems with minimal bias and achieve higher
performance for different tasks, but typically with millions of tri-
als for convergence. For model-based RL algorithms, much fewer
samples are required for learning a decent policy since they can
use each sample to better learn to predict the system dynamics
and obtain near-optimal behavior by planning through the dy-
namics. So model-based algorithms tend to be substantially more
efficient [4, 14]. However, the performance of model-based methods
is limited by the planning algorithms. In addition, the existence of
asymptotic bias in the learned model usually results in highly sub-
optimal policy and relatively lower final performance compared
with model-free RL algorithms [11].

In this project, we propose our method that could gradually
transform a model-based RL training framework to a model-free
actor-critic architecture such as Deep Deterministic Policy Gra-
dient (DDPG) [16]. The whole training process goes through 3
stages: model-free pre-training, model-based imitation and model-
free fine-tuning. The framework of the second stage, which is the
most creative part of our work, is shown in figure 1. Our principle
contributions are:
• In the second stage, our approach uses a negative value
function as the terminal cost to approximate the discounted
sum of future costs from the last predicted state to the end for

https://github.com/clthegoat/GT-Mb-Mf

model-based planning, which is more reasonable in theory
for model-based control.
• By incorporating value learning and gradual reduction of the
planning horizon, our approach further extends the strategy
ofmodel-based RLwithmodel-free fine-tuning to actor-critic
RL architecture.
• The evaluation shows that with our approach, the modified
model-based learning enables better initialization for model-
free actor-critic learning and leads to faster convergence
and competitive final performance compared with existing
methods.

2 MODELS AND METHODS
2.1 Related Works
Existing works have sought to integrate model-based learning with
model-free policy learning in different ways. The Dyna-type algo-
rithms [3, 10] use the interaction experiences to train one or an
ensemble of neural networks to learn the dynamics model, which
are utilized to generate additional imagined samples for model-free
policy learning [8]. Although higher sample efficiency is achieved,
they still have limited performance for tasks with high dimensional
action space since the synthetic samples would degrade with mod-
eling errors [11]. Another algorithm MBMF [1] uses the learned
model to predict the cost function of the current policy, which pro-
vides priors for the intertwined model-free optimization. However,
the cost function is modeled by the Gaussian process, which is pro-
hibitive for the higher-dimensional systems or policies. Method [5]
introduce the Model-based Value Expansion (MVE) which incor-
porates learned dynamics models to help the value learning. By
simulating a fixed short-term horizon, it succeeds to reduce the
value estimation error, but does not directly help the policy learning
process. Approach [14] proposed model-based RL with model-free
fine-tuning (Mb-Mf), where a model-based learner is trained to
imitate a model predictive control (MPC) policy and then utilized
to initialize a model-free learner, but it could not be integrated
with widely applied off-policy actor-critic frameworks [6, 9, 16].
Our method, Gradual Transition from Model-based to Model-free
RL (GT-Mb-Mf), further extends the idea of Mb-Mf. Our approach
integrates a model-based learner with the current learned target
value function as the terminal cost for open-loop planning, and
gradually transform it to pure model-free actor-critic learning by
reducing the planning horizon.

2.2 Preliminaries
Basic reinforcement learning is modeled as a Markov decision pro-
cess, where we have sets of agent states S and actions A, and
probability model of state transition under certain action and re-
ward function 𝑟 . In this paper, we only consider the deterministic

https://github.com/clthegoat/GT-Mb-Mf


Le Chen, Yunke Ao, Kaiyue Shen, Zheyu Ye

Figure 1: Framework of the second training stage of ourmethod. The interaction data is recorded in a replay buffer, which is used for training the neural networks
that learn the dynamics model and reward model. The data pairs are also extended to longer trajectories using model-based prediction and planning, which can
guide policy learning and value learning. The updated policy is again utilized for generating new interaction data. The planning horizon is gradually reduced
during training.

situation, so we formulate the transition as the dynamics model
𝑓 : S × A → S. The goal at each time step 𝑡 is to learn the
policy that maximizes the expected cumulative reward, given by∑∞
𝑡 ′=𝑡 𝛾

𝑡 ′−𝑡𝑟 (𝑠𝑡 ′, 𝑎𝑡 ′), where𝛾 ∈ [0, 1] is a discount factor that weigh
more rewards in the near future.

2.3 Overview of GT-Mb-Mf
In our approach, the models for the agent to learn include the policy
`𝜙 , the Q function𝑄\ , the dynamics model 𝑓𝛼 and the rewardmodel
𝑟𝛽 . Besides, there are also target networks `𝜙′ and 𝑄\ ′ that update
slowly following `𝜙 and 𝑄\ to stabilize training [13]. The whole
GT-Mb-Mf algorithm actually goes through three stages. 1. Model-
free pre-training, when random actions and learned policy are
first executed to quickly acquire a large amount of usable data for
dynamics, reward, and value learning. 2. Model-based imitation
learning, during which well-learned models are used to guide policy
learning. 3. Model-free fine-tuning like normal DDPG.

The framework of the second stage is shown in Figure 1. It
consists of four parts: interaction, training data generation, model-
based planning, and learning. The training data comes from the
simulated environment in the interaction step. They will be utilized
for model learning, Q-learning, and policy learning in the learning
module. To speed up the policy learning, we take advantage of the
MPC controller in the finite horizon model-based planning module
to provide expert actions for imitation. The updated policy is again
utilized for interaction.

As the times of looping increase, the planning horizon of the
MPC controller will be reduced gradually to zero following a pre-
defined rule. In this way, finally, the whole interaction and learning
become again a classical model-free framework with only value
learning and policy learning, which guarantees a comparable final
performance with pure model-free methods.

The whole algorithm is based on the assumption that Model
learning is easier than value learning, which means the models
(including the dynamics model and reward model) are well-learned
much earlier than the Q function. Here, "well-learned" means suffi-
ciently close to the true value. This assumption has been verified

in previous works [5, 14]. We detail our model-based planning in
Sec 2.4, design and training of models in Sec 2.5.

2.4 MPC with Value Function as Terminal Cost
In a traditional MPC framework, the open-loop planning is solving
a constrained optimization problem:

𝑚𝑖𝑛

𝐻−1∑
𝑡=0

𝐼 (𝑠𝑡 , 𝑎𝑡 ) + 𝐼𝑓 (𝑠𝐻 )

𝑠 .𝑡 . 𝑠𝑡+1 = 𝑓 (𝑠𝑡 , 𝑎𝑡 ), 𝑡 = 0, 1, · · · , 𝐻 − 1
𝑠𝑡 ∈ S, 𝑎𝑡 ∈ A, 𝑡 = 0, 1, · · · , 𝐻 − 1
𝑠0 = 𝑠, 𝑠𝐻 ∈ S𝑓

(1)

where 𝑠 is the current state, 𝐼 (𝑠𝑡 , 𝑎𝑡 ) denotes the stage cost, 𝐼𝑓 (𝑠𝐻 )
is the terminal cost that approximate the "cost to go" after timestep
𝐻 . 𝑓 (𝑠𝑡 , 𝑎𝑡 ) is the dynamics function. S, A and S𝑓 are constraints
for states and actions.

In our framework, the definition of the negative value function
is similar to the terminal cost of MPC, and the definition of "cost" is
the opposite of "reward". Therefore, given learned dynamics model
𝑓𝛼 , reward model 𝑟𝛽 , value model 𝑄\ and policy model `𝜙 , the
open-loop planning optimization actually solved in our case is:

𝑚𝑎𝑥

𝐻−1∑
𝑡=0

𝛾𝑡𝑟𝛽 (𝑠𝑡 , 𝑎𝑡 ) + 𝛾𝐻𝑄\ ′ (𝑠𝐻 , `𝜙′ (𝑠𝐻 ))

𝑠 .𝑡 . 𝑠𝑡+1 = 𝑓𝛼 (𝑠𝑡 , 𝑎𝑡 ), 𝑡 = 0, 1, · · · , 𝐻 − 1
𝑠𝑡 ∈ S, 𝑎𝑡 ∈ A, 𝑡 = 0, 1, · · · , 𝐻 − 1
𝑠0 = 𝑠, 𝑠𝐻 ∈ S𝑓

(2)

where 𝐻 is the planning horizon, 𝛾 is the discount factor, \ ′ and 𝜙 ′
are parameters of target value and target policy network. Calculat-
ing the exact optimum for such a non-linear optimization problem
can be difficult, so we use a simple but generally effective random
shooting method. We randomly generate 𝐾 candidate action se-
quences and use the learned dynamics and reward model to predict
the corresponding state sequences and rewards, the target policy
and value model to predict the terminal costs. Finally, we pick



Gradual Transition From Model-Based to Model-Free Actor-Critic Reinforcement Learning

the action sequence with the highest expected cumulative reward.
Following the MPC procedure, we only keep the first action 𝑎 for
policy learning, which will be detailed in the next section.

Note that the introduction of the value model enables us to
largely shorten the planning horizon. In the normal MPC case, bet-
ter performance often needs a larger horizon. In our case, by taking
into account the "cost to go" term computed by the value model, the
cumulative reward can be precise even when the planning horizon
is small, as long as the value model is good enough.

2.5 Algorithm Design and Training
Learning dynamics and reward functions: Dynamics and re-
ward models are continuously trained before the transition into
the third stage. We parameterize the dynamics model and reward
model as neural networks: 𝑠𝑡+1 = 𝑓𝛼 (𝑠𝑡 , 𝑎𝑡 ), 𝑟𝑡 = 𝑟𝛽 (𝑠𝑡 , 𝑎𝑡 ). Given
a batch of training data {𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1, 𝑟

𝑖
𝑡 , 𝑑

𝑖
𝑡 }𝑁𝑖=1, where 𝑑

𝑖
𝑡 indicate

whether the terminal state is entered, both models are trained using
stochastic gradient decent (SGD) to minimize the mean squared
errors:

𝜖𝑑𝑦𝑛 =
1
𝑁

𝑁∑
𝑖=1
∥𝑠𝑖𝑡+1 − 𝑠

𝑖
𝑡+1∥

2, (3)

𝜖𝑟𝑒𝑤𝑎𝑟𝑑 =
1
𝑁

𝑁∑
𝑖=1
∥𝑟 𝑖𝑡 − 𝑟 𝑖𝑡 ∥2 (4)

A higher model prediction accuracy is fundamental to the perfor-
mance of the MPC controller.

Learning value function: The Q-value function is trained us-
ing the same rule in all three stages. Given a batch of data sampled
from the replay buffer {𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1, 𝑟

𝑖
𝑡 , 𝑑

𝑖
𝑡 }𝑁𝑖=1, the model is trained

by minimizing the one-step temporal difference loss:

1
𝑁

𝑁∑
𝑖=1
∥𝑟 𝑖𝑡 + (1 − 𝑑𝑖𝑡 )𝛾𝑄\ ′ (𝑠𝑖𝑡+1, `𝜙′ (𝑠

𝑖
𝑡+1)) −𝑄\ (𝑠𝑖𝑡 , 𝑎𝑖𝑡 )∥2 (5)

which is widely applied in actor-critic algorithms. Here we adopt
one-step Q-learning because it has less variance for the target and
is more stable for learning compared with multi-step Q-learning.

Learning policy through imitation and policy gradient: In
the second stage when dynamic and reward models have been
trained relatively well and the current policy performs not as good
as theMPC controller, we force the policy to imitate theMPC policy:

𝜙 ← 𝜙 − ∇𝜙
1
𝑁

𝑁∑
𝑖=1
∥`𝜙 (𝑠𝑖𝑡 ) − 𝑎𝑡 𝑖 ∥2 (6)

where 𝑎𝑡 𝑖 is the best action given by MPC controller at state 𝑠𝑖𝑡 . In
the first or the third training stage, we apply the gradient ascend
methods to the Q-function to train the policy:

𝜙 ← 𝜙 + 1
𝑁

𝑁∑
𝑖=1
∇𝜙 `𝜙 (𝑠𝑖𝑡 )∇𝑎𝑄\ (𝑠𝑖𝑡 , 𝑎) |𝑎=`𝜙 (𝑠𝑖𝑡 ) (7)

which is named Deterministic Policy Gradient (DPG) [13]. It could
be applied to off-policy data and achieve high sample efficiency.

Gradual Transition: During the model-based imitation learn-
ing status, we gradually reduce the planning horizon 𝐻 , and finally,
the training method will be transformed into a pure model-free

Algorithm 1 Gradual Transition from Model-based to Model-free
Reinforcement Learning
1: //Initialization:
2: set maximum time step𝑇 , maximum planning steps 𝐻 , number of to-

tal/ model-free pre-training/ model-based training/ reduction episodes
𝐸𝑚, 𝐸𝑝 , 𝐸𝑚𝑏 , 𝐸𝑟𝑑 .

3: initialize models 𝑓𝛼 , 𝑟𝛽 ,𝑄\ ′ = 𝑄\ , `𝜙′ = `𝜙 ,
4: initialize the reply buffer 𝐷 with random interaction experiences
5:
6: for episode=0 to 𝐸𝑚 do
7: //Interaction:
8: reset the state and environment
9: for t=0 to𝑇 do
10: get current state 𝑠𝑡
11: apply 𝑎𝑡 = `𝜙 (𝑠𝑡 ) , receive 𝑟𝑡 , arrive at 𝑠𝑡+1, set 𝑑𝑡 = 𝑑𝑜𝑛𝑒

12: record (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1, 𝑑𝑡 ) in 𝐷

13: if 𝑑𝑡 then break
14: end if
15: end for
16:
17: //Training:
18: randomly sample {𝑠𝑖𝑡 , 𝑎𝑖𝑡 , 𝑠𝑖𝑡+1, 𝑟 𝑖𝑡 , 𝑑𝑖 }𝑁𝑖=0 from 𝐷

19: train 𝑓𝛼 , 𝑟𝛽 , by applying SGD to (3)-(4)
20: train𝑄\ , by applying SGD to (5)
21: if 𝐸𝑝<episode<𝐸𝑝+𝐸𝑚𝑏 and 𝐻 > 0 then ⊲ imitation learning
22: compute {𝑎𝑖𝑡 }𝑁𝑖=0 from {𝑠𝑖𝑡 }𝑁𝑖=0 by solving (2)
23: train `𝜙 by applying (6)
24: else ⊲ model-free training
25: train `𝜙 by applying (7)
26: end if
27: update target𝑄\ ′ , `𝜙′
28:
29: //Gradual Transition:
30: if episode % 𝐸𝑟𝑑 = 0 and episode ≠ 0 then
31: 𝐻 = 𝐻 − 1
32: end if
33: end for
34: return 𝑓𝛼 , 𝑟𝛽 ,𝑄\ , `𝜙

actor-critic method when the planning horizon is zero. A natural
idea is to reduce the 𝐻 by 1 after every fixed number of interaction
episodes, denoted by 𝐸𝑟𝑑 , which proves to be effective in our exper-
iment environments. 𝐸𝑟𝑑 is a hyper-parameter to be decided. The
whole algorithm is shown in Alg 1.

3 RESULTS
In this section, we first evaluate different design decisions for model-
based RL in the imitation learning stage. Then we compared perfor-
mance of our methods with different baselines for benchmark tasks
in the OpenAI Gym, including pendulum (S ∈ R3,A ∈ R), lunar-
lander-continuous (S ∈ R8,A ∈ R2), half-cheetah (S ∈ R23,A ∈
R6), hopper (S ∈ R17,A ∈ R3) and walker2d (S ∈ R17,A ∈ R6).

3.1 Experiments on MPC Controller Design
The design decisions for model-based controllers include the num-
ber of model-free pre-training episodes 𝐸𝑝 , number of sampled tra-
jectories for action selection of model-based controller 𝐾 , whether
to include terminal costs, and the planning horizon 𝐻 . In previous



Le Chen, Yunke Ao, Kaiyue Shen, Zheyu Ye

Figure 2: Experiments for analyzing the model-based controller. (a)-(b) are the performance of GT-Mb-Mf with different numbers of episodes for model-free pre-
training and different shooting numbers. The blue and red line segment on the episode axis indicate the imitation learning stages for different agents. It could be
noticed that there exists sudden decrease of performance at episode 50 in (a) and episode 400 in (b) for the red and yellow lines, which illustrates the importance of
choosing proper 𝐸𝑝 . (c)-(d) investigate whether including the value function as the terminal cost for the planning of MPC would improve the performance of the
model-based controller. The number for model-free pre-training are kept the same, which are 20 and 200 respectively for pendulum and cheetah. The numbers
of episodes for model-based training are all 25 and 50 respectively for pendulum and halfcheetah.

works [14], it has been verified that increasing planning horizon
does not improve the performance much due to the bias of model
learning. Therefore in this paper, we mainly investigate the former
three design decisions.

Number of episodes for model-free pre-training: This de-
sign decision reflects when it is believed that the models are learned
well enough for the agent to utilize the model-based controller to
guide policy learning. From Figure 2 (a)-(b), it is shown that even
with higher 𝐸𝑝 , the performance of the policy during the imitation
learning status does not improve much. The reason could be the
existence of bias in the model and the inefficiency of shooting-
based optimization for high dimensional action space. Therefore
𝐸𝑝 should not be set to be too large.

Shooting number: This design decision is chosen by trading
off computational cost and performance. Intuitively, higher 𝐾 could
give better performance for the model-based controller. However,
as is shown in Figure 2 (a)-(b), the performance does not improve
as much as is expected when 𝐾 increase. This could also be caused
by the existence of bias in dynamic and reward networks.

Value function as terminal cost: According to Figure 2 (c)-(d),
the modified Mb-Mf (green) by additionally using negative value
function as the terminal cost for open-looped planning may keep
nearly the same performance as the original Mb-Mf (blue), even
though it is more reasonable in theory. This is possibly because
when 𝐸𝑝 is relatively small, the target value network is still not
sufficiently updated, which make less contribution to planning.
Therefore, we could also substitute the original Mb-Mf with this
modified Mb-Mf as the baseline to compare with our proposed
algorithm.

3.2 Performance Results on Benchmark Tasks
The baselines to be comparedwith ourmethod areMVE, DDPG, and
modified Mb-Mf. To ensure a fair comparison between GT-Mb-Mf
and modified Mb-Mf, we keep the starting episode as well as the
total number of episodes for the imitation learning stage to be
the same between the two methods. As for MVE, it is found that
only when the imaginary horizon is 2 will the agent perform rel-
atively well in pendulum and half-cheetah. However, for other
environments with early termination conditions, the termination
of imagined trajectories can not be predicted with only the learned
dynamics and reward networks, which makes MVE perform poorly.
Therefore we exclude the performance results of MVE in these
environments.

As is shown in Figure 3 (a)-(c), for environments with relatively
stable dynamics and lower dimensions for action space such as half-
cheetah and pendulum, GT-Mb-Mf reaches the highest performance
earlier than DDPG. One reason could be that during imitation learn-
ing stage, the policy quickly imitate a sub-optimal policy which has
less difference to the optimal policy, and more data interacted with
this sub-optimal policy is recorded in the replay buffer. This results
in faster improvement of policy in the model-free fine-tuning stage
when the policy gradient is applied to the sub-optimal policy based
on plenty of data interacted with this policy. This phenomenon is
also shown in [14] with Mb-Mf. Besides, compared with Mb-Mf,
our model-based controller is even more sample efficient. Because
as the planning horizon is continuously reduced, the dimensions
of the searching spaces for the shooting-based controller also de-
creases, which improves the effect of imitation learning and makes



Gradual Transition From Model-Based to Model-Free Actor-Critic Reinforcement Learning

Figure 3: Learning curves for GT-Mb-Mf, MVE, DDPG and Mb-Mf on pendulum (a), cheetah (b), lunar-lander (c), walker2d (d) and hopper (e). The curves have
been smoothed using exponential moving average with factors from 0.8-0.9. The dynamics and reward networks both have one hidden layer with 128 units, and
are trained with 1 × 10−3 learning rate. For the model-free training stages of all the agents, we adopt the hyperparameters recommended in the original paper of
DDPG. During the imitation learning stage, the learning rates for actor and critic are 1 × 10−4 and 1 × 10−3 respectively. Based on the results from Sec 3.1, we set
planning horizon to be 5 and shooting numbers to be 20 for all GT-Mb-Mf and Mb-Mf agents. 𝐸𝑝 are set as the number of episodes when the performance of the
policy of the model-free learner start to reach the performance of the model-based MPC controller.

our performance converge even faster. For other environments
with unstable dynamics or high dimensional action spaces such
as hopper and walker2d, our GT-Mb-Mf could perform at least as
good as DDPG without decreasing the final performance according
to Figure 3 (d)-(e).

4 DISCUSSION
We have evaluated our approach on a range of challenging simu-
lated tasks. Although our model-based controller cannot always
reach high rewards on its own, it could improve sample efficiency
when it is applied to initialize a model-free learner, compared with
pure model-free algorithms. Besides, our method further extend
Mb-Mf for actor-critic RL algorithms such as DDPG by including
the value function in both learning and planning of the model-based
learning status. The transition from model-based imitation learning
to model-free training is also smoother by gradually reducing the
planning horizon and results in faster convergence compared with
Mb-Mf according to the experiment results.

In spite of the effectiveness and efficiency of our GT-Mb-Mf
algorithm, currently, there still exist some limitations. Although
the improvement of the performance of model-free learner is faster
after the imitation learning status, the improvement during the
imitation status is limited. This could be addressed by using a better
model-based controller or a more effective policy update algorithm
utilizing the learned dynamics model and reward model. Besides,
the final performance of the algorithms is restricted by the model-
free learner we currently adopt (DDPG). Higher final performance
could be achieved when this idea is extended to more powerful
actor-critic model-free algorithms.

Our GT-Mb-Mf method has wide potential applications. For ex-
ample, similar ideas could be used to speed up other actor-critic
RL algorithms such as soft actor critic (SAC) and twin delayed
DDPG (TD3) [6, 9]. As DDPG has very limited performance in en-
vironments with higher state and action dimensions such as ant
and humanoid, we could include experiments for these tasks in our
future works when we extend our method for these more powerful
algorithms. Except for model-free learner, various existing model-
based RL learners [7, 12] could also be adopted in this framework
to further improve the sample efficiency.

5 SUMMARY
Wepresent GT-Mb-Mf, which begins withmodel-free learning, then
goes through a model-based framework integrated with the current
learned target value function as the terminal cost for open-loop
planning and gradually transform to pure model-free actor-critic
learning by reducing the planning horizon. The experiment results
show that, for environments with relatively stable dynamics and
lower dimensions for action space, our method converges faster and
reaches the highest final performance than other algorithms. For
other environments with unstable dynamics or high dimensional
action space, our method could perform at least as good as DDPG.
An interesting avenue for further improvement is to integrate our
approach with other state of the art actor-critic model-free learn-
ers [6, 9]. Additionally, for model-based controller design, instead of
random shooting, extensions to other planning algorithms that are
more efficient for high dimensional and unstable dynamics would
further improve its generality, and this is left for future work.



Le Chen, Yunke Ao, Kaiyue Shen, Zheyu Ye

REFERENCES
[1] Somil Bansal, Roberto Calandra, Kurtland Chua, Sergey Levine, and Claire Tomlin.

2017. Mbmf: Model-based priors for model-free reinforcement learning. arXiv
preprint arXiv:1709.03153 (2017).

[2] Le Chen, Yunke Ao, Florian Tschopp, Andrei Cramariuc, Michel Breyer, Jen Jen
Chung, Roland Siegwart, and Cesar Cadena. 2020. Learning Trajectories for
Visual-Inertial SystemCalibration viaModel-basedHeuristic Deep Reinforcement
Learning. In Proceedings of the 4th Conference on Robot Learning (CoRL).

[3] Ignasi Clavera, Jonas Rothfuss, John Schulman, Yasuhiro Fujita, Tamim Asfour,
and Pieter Abbeel. 2018. Model-based reinforcement learning via meta-policy
optimization. arXiv preprint arXiv:1809.05214 (2018).

[4] Marc Peter Deisenroth, Gerhard Neumann, and Jan Peters. 2013. A survey on
policy search for robotics. now publishers.

[5] Vladimir Feinberg, Alvin Wan, Ion Stoica, Michael I Jordan, Joseph E Gonzalez,
and Sergey Levine. 2018. Model-based value estimation for efficient model-free
reinforcement learning. arXiv preprint arXiv:1803.00101 (2018).

[6] Scott Fujimoto, Herke Van Hoof, and David Meger. 2018. Addressing function
approximation error in actor-critic methods. arXiv preprint arXiv:1802.09477
(2018).

[7] Yarin Gal, Rowan McAllister, and Carl Edward Rasmussen. 2016. Improving
PILCOwith Bayesian neural network dynamics models. In Data-Efficient Machine
Learning workshop, ICML, Vol. 4. 34.

[8] Shixiang Gu, Timothy Lillicrap, Ilya Sutskever, and Sergey Levine. 2016. Contin-
uous deep q-learning with model-based acceleration. In International Conference
on Machine Learning. 2829–2838.

[9] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. arXiv preprint arXiv:1801.01290 (2018).

[10] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. 2018.
Model-ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592
(2018).

[11] Eric Langlois, Shunshi Zhang, Guodong Zhang, Pieter Abbeel, and Jimmy Ba.
2019. Benchmarking model-based reinforcement learning. arXiv preprint
arXiv:1907.02057 (2019).

[12] Sergey Levine and Vladlen Koltun. 2013. Guided policy search. In International
Conference on Machine Learning. 1–9.

[13] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[14] Anusha Nagabandi, Gregory Kahn, Ronald S Fearing, and Sergey Levine. 2018.
Neural network dynamics for model-based deep reinforcement learning with
model-free fine-tuning. In 2018 IEEE International Conference on Robotics and
Automation (ICRA). IEEE, 7559–7566.

[15] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew
Lai, Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel,
et al. 2018. A general reinforcement learning algorithm that masters chess, shogi,
and Go through self-play. Science 362, 6419 (2018), 1140–1144.

[16] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and
Martin Riedmiller. 2014. Deterministic policy gradient algorithms.


	Abstract
	1 Introduction
	2 Models and Methods
	2.1 Related Works
	2.2 Preliminaries
	2.3 Overview of gtmbmf
	2.4 MPC with Value Function as Terminal Cost
	2.5 Algorithm Design and Training

	3 Results
	3.1 Experiments on mpc Controller Design
	3.2 Performance Results on Benchmark Tasks

	4 Discussion
	5 Summary
	References

