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1. SMPL-X Registration Pipeline
From our Volumetric Capture Stage we get high-quality

3D scans and RGB images of 53 camera views. We fit
an SMPL-X model [18] to each scan. The gender-specific

model M(θ,β,ψ) is parameterized by the whole body pose
θ, body shape β, and facial expressionsψ. The pose can be
further divided into the global pose θg , head pose θf , artic-
ulated hand poses θh, and remaining body poses θb. Before
capture, our subjects indicate their gender on a question-
naire, so we subsequently use the corresponding gender-
specific SMPL model for the fitting.

Our SMPL-X registration pipeline has three steps: 1. 2D
landmarks detection (Sec. 1.1); 2. 3D landmarks generation
(Sec. 1.2); 3. multi-stage fitting (Sec. 1.3).

1.1. 2D Landmarks Detection

As shown in the left part of Fig. 10, in the 2D landmarks
detection stage, we first render the 3D scans with known
camera parameters to get the corresponding binary human
mask. Then we predict a tight bounding box from the mask
and use it to crop out the human part from the RGB im-
ages. We resize the crop to fit the aspect-ratio of images
expected by OpenPose [5, 21]. We then feed the cropped
and resized image into OpenPose to get 2D full body land-
marks including the body keypoints, hand keypoints and fa-
cial landmarks. The cropping improves the resolution of the
human body and the following resizing operation makes the
image ratio more similar to OpenPose training images, so as
to improve the detection results.

1.2. 3D Landmarks Generation

As shown in the right part of Fig. 10, in the 3D landmarks
generation stage, we first pass the detected 2D landmarks
through a view filter for hands and then use triangulation to
get 3D full body landmarks. To be more specific, for each
camera view, we first use the hand keypoints to estimate
the tight bounding box for each hand, and compute the In-
tersection over Union (IoU) of the two bounding boxes. If
the IoU is larger than the given threshold, we will set the
confidence of all hand keypoints in this view to be 0, which
means these 2D hand keypoints are ignored during the com-
putation of the 3D hand keypoints. The reason behind this
filter is that it is very likely for OpenPose to return bad pre-
dictions when there exists strong occlusions. The wrong 2D
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Figure 10. Full-body landmarks generation overview. It consists of two steps: (a) 2D landmarks detection using OpenPose on cropped
images; (b) 3D landmarks generation via triangulation. We filter out views which show a large overlap of 2D hand landmarks.
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Figure 11. Registration overview. For each subject, we first
obtain the shape by running the multi-stage fitting pipeline (cf .
Tab. 5) once on minimally clothed scans (5 frames). Then we fix
the shape and run the pipeline once more on scans where sub-
jects wear casual clothing to get the full body pose and facial
expressions. By disentangling the optimization of ground-truth
shape and ground-truth pose, we can dissolve the shape ambiguity
caused by loose clothing.

detection may further result in poor 3D landmarks, which is
why we simply filter them out.

1.3. Multi-Stage Fitting

For fitting, similar to [1, 17], we adopt a multi-stage
pipeline, shown in more detail in Tab. 5. First we ini-
tiate the SMPL-X parameters with the sparse 3D land-
marks obtained from multi-view RGB images as described

in Sec. 1.2. Then we refine the body pose and shape with
dense surface information coming from the scan meshes.
Finally, we refine the hand pose and facial expressions with
the 3D landmarks.

The registration pipeline must deal with shape ambigu-
ity caused by loose clothing. Instead of using the time-
consuming skin-cloth segmentation as is the practice in
[17], we disentangle the optimization of ground-truth shape
and ground-truth poses as shown in Fig. 11. This is based
on the assumption that the same person wearing differ-
ent clothes still shares the same body shape. We first run
the multi-stage fitting pipeline on minimally clothed scans,
which is a short 5-frame sequence where the participants
wear tight-fitting clothes. Then, for a regular sequence
where participants wear their casual clothes, we initiate
the multi-stage fitting pipeline with the previously learned
shape parameters that then remains fixed during the opti-
mization of full body pose, hand pose and facial expres-
sions.

2. X-Avatar: Implementation Details
2.1. Network Architecture

We implement our models in PyTorch [16]. Fig. 12 illus-
trates the network architectures for the geometry-, texture-,
and deformation-networks. We use geometric initialization
[2] for the geometry network’s weights and PyTorch’s de-
fault initialization for the weights of the skinning network
and texture network. For both the geometry network and
texture network, we apply positional encoding [15] with 4
frequency components on the input points to model high-
frequency details, and condition the networks on pose θb
and facial expressions ψ to handle pose-dependent defor-
mations. We additionally condition the texture network on



Figure 12. Network Architecture. Each block represents a linear layer with its output dimension specified in the inset, followed by a
weight normalization layer [20] and a Softplus [11] activation layer.

ID Description Optimized
parameters

Losses

1 optimize pose θg , θb LJ , Lθb
2 optimize pose, shape θg , θb, β LJ , LS , Lθb , Lβ
3 refine pose, shape θg , θb, β LJ , LS , Lθb , Lβ,

Lreg

4 refine body pose θb LJ , LS , Lθb ,
Lreg

5 refine hands θh LJh
, Lθh

6 refine face θf , ψ LJf
, Lθf , Lψ

Table 5. Details of Multi-stage fitting pipeline. We propose a
coarse-to-fine fitting pipeline where we first optimize for global
pose θg , body pose θb and shape β (stage 1-2). We then re-
fine those parameters in stages 3-4, before moving the smaller
parts of the body, i.e. hands θh, face θf and facial expressions
ψ. LJ ,LJh ,LJf are data terms that penalize differences between
body, hands, and face 3D landmarks. LS minimizes the point-to-
point distance between the scan and SMPL-X vertices. Lreg is the
interpenetration loss that encourages the SMPL-X to be inside the
scan, following [1]. Lθb , Lθh , Lθf penalize unrealistic bending
of the torso, hands, and face joints. Lβ,Lψ are L2 regularizers
on the body shape and facial expressions. The shape β is only
optimized for the minimally-clothed sequence (cf . Fig. 11). Reg-
istration is more robust in this coarse-to-fine manner.

the last layer feature F of the geometry network and the
normal nd in deformed space so that the texture network is
aware of the underlying geometry. We ablate on the design
choices for the texture conditions in Sec. 5.2 of this Supp.
Mat.

2.2. Model Initialization

To speed up the training process, we pre-train the geom-
etry network focc and skinning network fw with male and
female SMPL-X meshes from AMASS [14].

2.3. Part Label Assignment

We use a hard assignment and every point is assigned
to only one part. The assignment works as follows: We
first compute the part label of each SMPL-X vertex. Be-
cause SMPL-X has a fixed topology and it is a priory known
which vertex IDs originally belonged to the face or hands,
this is a simple look-up that only needs to be done once.
Then, for each vertex on the 3D scan, its part label is de-
termined by the pre-computed label of its closest SMPL-X
vertex.

2.4. Correspondence Search

Following SNARF [8], we use Broyden’s method [4] for
our correspondence search. We apply our part-aware strat-
egy to the initialization stage. For each deformed point xd

with part label ℓ, we initialize the states by inversely trans-
forming xd with bone transformations of the corresponding
bone group Gℓ. Here, ℓ ∈ {F,LH,RH,B}, |GF | = 3,
|GLH | = |GRH | = 16, |GB | = 9. In the experiments,
we set the maximum number of update steps to 50 and the
convergence threshold to 10−5.

2.5. Canonical Pose

Following [8, 22], we set the roll value of left hip and
right hip to π/6 and −π/6, and the pitch value of the jaw to
0.2. With this definition, the canonical shape is in a star-like
pose with little self-contact and smooth boundaries, which
makes the learning easier as MLPs tends to produce smooth
outputs.

2.6. Adaptation from 3D Scans to RGB-D Video

To enable learning X-Avatars from RGB-D videos, we
make the following modifications to the scan-based version:



• We add a data pre-processing step, in which we gen-
erate colored point clouds from the RGB-D images
with known camera parameters and estimate normals
with points from the local neighborhood.

• In the geometry module, we replace the occupancy
field focc with a signed distance field (SDF) fsdf sim-
ply by removing the softmax activation function in the
last layer. The reason is that without the surface from
the scan, we cannot calculate the ground-truth occu-
pancy, but we know all points lie on the surface so the
ground-truth SDF naturally equals to zero.

• In the deformation module, we modify the pooling
operation from maximum to minimum since the defi-
nition of inside and outside for occupancy and SDF are
opposite.

• In the objective function, compared to Eq. (12) in the
main paper, we replace the BCE loss LBCE with an
L1 loss L1, remove the bone occupancy loss Lbone, and
add an Eikonal loss Leik following [10, 12]. The new
objective function thus becomes:

L =λ1L1 + λnLn + λRGBLRGB

+λjointLjoint + λsurfLsurf + λeikLeik

L1 =
∑

xd∈Pon

∥o(xd,θb,ψ)∥1

Leik =
∑

xd∈Poff

(∥fsdf(xc,θb,ψ)∥ − 1)2

(1)

2.7. Losses

We set the weights of the losses to λBCE = λ1 =
1, λn = 1 (λn = 0.1 for RGB-D), λRGB = 1, λbone =
1, λjoint = λsurf = 10, λeik = 0.5.

2.8. Training Details

We train our networks using the the Adam optimizer [13]
with a learning rate η = 10−3 (η = 10−4 for RGB-D), and
β = (0.9, 0.999), without weight decay or learning rate de-
cay. Training a model takes around 24h on a single Nvidia
RTX 6000 GPU.

3. X-Humans: Dataset Details
With our high-quality, multi-view volumetric capture

stage [9], we provide X-Humans, which consists of 20 sub-
jects with various clothing types, hair styles, genders and
ages. It is the first 3D textured clothed human dataset that
contains a large variation of body poses, hand gestures and
facial expressions. As illustrated in Fig. 13, our participants
not only do kicks, dancing, weight lifting and other kind of
sports that involve large body movements, but also perform
more fine-level finger movements, such as playing instru-
ments, using tools, or counting. Along with different poses,

people show corresponding emotions like laughing, frown-
ing and screaming. For each subject, we split the motion
sequences into a training and testing set. Overall, there are
233 sequences (35,475 frames), with 190 sequences (29,036
frames) for training and 43 sequences (6,439 frames) for
testing. We also provide the ground truth SMPL[-X] regis-
tration and the way to obtain them is described in Sec. 1 of
this Supp. Mat. To provide SMPL registrations we convert
our SMPL-X fits using the official transfer code [18].

The collection and publication of X-Humans has been
reviewed and approved by an internal ethics committee.
All subjects have participated voluntarily, signed a consent
form and have received monetary compensation for their
time required to complete the capture.

4. Baselines: Implementation Details
For baseline SMPLX+D, we adapt the implementation

from [3]. For each subject, we optimize the offset between
the scans and SMPL-X meshes, average over the training
set to get the template offset. We then add the offset on all
testing SMPL-X meshes to model the clothed human. For
SCANimate [19] and SNARF [8], we use their public code.
Since these two methods require SMPL registration, we use
the official model parameter transfer code provided in [18]
to convert SMPL-X parameters to SMPL parameters.

5. Supplementary Results
5.1. Metrics on Faces.

In the main paper, due to space constraints, we only in-
clude metrics for the entire body (All) and hands (Hands).
We provide additional metrics for the face region (Face) in
this Supp. Mat. In Tab. 6 and Tab. 7, we observe the same
trend on the face as we did for the hands, namely that X-
Avatar outperforms the baselines.

5.2. Additional Ablation Studies

Part-Aware Initialization In the main paper, we quan-
titatively show that compared with our part-aware initial-
ization, the baseline that is initialized with all bones (body,
hands, face) has comparable performance in terms of the ge-
ometry but with much lower computation efficiency. Fig. 15
shows further visual comparison on the hands and face.
Both the shape and color look similarly for two methods,
which is consistent with the quantitative analysis.

Texture-Conditioning To increase the quality of the
learned texture, we condition our texture field fRGB on both
high-level geometry features F and low-level normals nd

derived from the deformed space, following [7, 22]. Though
we are not the first to do this, we still carry out the ablation
study on texture field conditions for completeness.



Figure 13. X-Humans gallery. With our high-quality, multi-view volumetric capture stage [9], we provide X-Humans, which consists of
20 subjects with various clothing types, colors, hair styles, genders and ages. It is the first dataset of 3D textured clothed human scans with
a large variation of body pose, hand gestures and facial expressions. Ground truth SMPL[-X] registrations are also provided.

Subject Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands Face All Hands Face All Hands Face All Hands Face

S1
SCANimate 2.60 8.39 2.43 54.75 54.22 19.35 0.967 0.760 0.957 0.941 0.569 0.898
SNARF 1.37 5.13 1.28 33.86 33.51 13.07 0.977 0.818 0.966 0.967 0.739 0.937
Ours 0.94 0.79 0.85 21.43 4.79 11.50 0.985 0.957 0.971 0.991 0.895 0.943

S5
SCANimate 3.31 6.77 8.88 44.01 43.54 27.57 0.969 0.776 0.919 0.933 0.590 0.732
SNARF 3.04 6.93 3.12 44.30 44.08 17.25 0.972 0.768 0.949 0.936 0.586 0.890
Ours 0.96 0.73 1.01 19.55 3.56 12.34 0.984 0.960 0.967 0.992 0.884 0.947

Table 6. More results on GRAB on the same subject reported in the main paper (S1, male) and a new subject (S5, female).

Ours
(init w all bones)

Ours
(complete)

Ours
(init w all bones)

Ours
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Figure 14. Effect of our part-aware initialization strategy. Our
final model gives similar predictions on hands, face geometry and
texture but with 3 times the speed of the baseline.

To verify the importance of geometry features F and
normals nd, we separately remove them from the condition,
and compare the qualitative results with the full version as
shown in Fig. 15. With both normals and features as con-
ditions, our complete version produces sharper contours of
the mouth, eyes, and more details like white teeth and shad-
ows on pants than the other two baselines.

Ours
(w/o normal)

Ours
(w/o feature)

Ours
(complete)

GT

Figure 15. Effect of our design decisions on the resulting tex-
ture. The one with both normals and geometry features as con-
ditons produces the sharpest details around the mouth, eyes, and
clothes.

5.3. Additional Results on GRAB Dataset

In the main paper, we show results on a male subject
(S1) from GRAB dataset. We also evaluate our method on
a female subject from GRAB (S5, 2,392 training and 766
testing frames). Tab. 6 shows that for S5 our method’s im-
provement compared to the baselines is even larger than for
S1.



Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands Face All Hands Face All Hands Face All Hands Face

SMPLX+D 5.75 5.19 3.41 48.41 23.48 17.69 0.921 0.790 0.915 0.957 0.774 0.905
SCANimate 6.54 9.78 4.63 59.71 48.32 23.41 0.925 0.726 0.931 0.919 0.557 0.858
SNARF 5.05 7.23 2.98 55.06 37.15 18.39 0.934 0.788 0.936 0.937 0.608 0.914
Ours 4.43 5.14 2.29 47.56 22.15 15.05 0.939 0.793 0.948 0.965 0.776 0.928

Table 7. Separate results for the entire body, hands and face on X-Humans (Scans).

5.4. Quantitative Results for Reconstruction

In the main paper, we compare our method with other
baselines on the animation task. Though it’s not our main
focus, we also provide the results on the reconstruction task.

Reconstruction results on X-Humans (Scans) Tab. 8
summarizes reconstruction results on X-Humans with all
scan-based methods. SNARF has the best score among all
methods. However, notice that all numbers are reported on
the training set, which means they only reflect the over-
fitting capabilities. Combining the findings in the animation
task, the hand learned by SNARF seems to overfit drasti-
cally on the training set. When given an unseen pose, it
tends produce a shape that barely looks like a human hand.
Though our method is not the best in the reconstruction
task, on one hand, its performance does not differ too much
from its best competitor, and on the other hand, it demon-
strates stronger generalization ability to unseen hand poses
as demonstrated in the main paper.

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

SMPLX+D 6.45 5.18 49.71 20.72 0.918 0.792 0.953 0.754
SCANimate 6.38 10.42 61.8 50.85 0.928 0.729 0.904 0.540
SNARF 2.55 2.29 43.03 15.4 0.955 0.925 0.974 0.792
Ours 2.66 4.78 43.53 22.18 0.957 0.810 0.980 0.790

Table 8. Quantitative reconstruction results on X-Humans
(Scans). Metrics show that SNARF can fit well on the training
set but mostly due to the over-fitting (especially for the face and
hands), which is verified in the animation task.

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

PINA 4.78 7.37 64.01 42.18 0.935 0.816 0.926 0.614
Ours 4.48 4.85 49.75 21.62 0.943 0.819 0.952 0.785

Table 9. Quantitative reconstruction results on X-Humans
(RGB-D). Our method beats PINA, showing our new expressive
human representation can better fuse partial observations and learn
body, hands and face entirely.

Reconstruction results on X-Humans (RGB-D) In
Tab. 9, we lists comparisons on RGB-D data with PINA
[10]. Different from training with scans where we have the
complete mesh information, when we learn from RGB-D

images, for each frame, we only have partial observations
from certain view points. Therefore, the reconstruction re-
sults measures the capability of fusing partial observations
from different view points into an implicit surface repre-
sentation. Our method outperforms PINA especially for the
hand region, which means our new human representation
can better model body, hands and face as an entirety.

5.5. Qualitative Results on X-Humans

We show more qualitative animation results on X-
Humans (from scans in Fig. 16, from RGB-D in Fig. 17) to
demonstrate that our model can generalize to various peo-
ple with different body shape, clothing types, patterns and
hair styles. More results can be found in the video.

5.6. Robustness to Noisy SMPL-X

We investigate the robustness of our method with respect
to the noisy estimation of the input SMPL-X parameters.
Specifically, we re-train our model on the GRAB subject
(S1) but induce random noise with a standard deviation of 2
degrees on the SMPL-X pose parameters. I.e., we compute
noisy inputs to our method as θnoisy = θ +N (0, 2π/180).
Note that we draw individual samples for each coordinate
of θ. We do not perturb the global orientation and trans-
lation. This noise level leads to significant differences be-
tween the noisy SMPL-X inputs and the original inputs (1st
row, Tab. 10). Although our original method struggles with
this noisy input (2nd row, Tab. 10), it does not fail entirely.
Please note however that our method does not explicitly op-
timize the SMPL-X pose parameters. If we optimize the
pose parameters jointly, robustness to the input noise in-
creases drastically (3rd row, Tab. 10).

Method CD↓ CD-MAX ↓ NC ↑ IoU ↑
All Hands All Hands All Hands All Hands

Noisy SMPL-X Input 9.60 23.83 70.80 60.79 0.912 0.634 0.897 0.376
Ours (w noise, w/o pose opt.) 5.02 18.62 74.60 69.41 0.934 0.585 0.883 0.335
Ours (w noise, w pose opt.) 3.85 1.93 29.31 8.37 0.960 0.916 0.958 0.862
Ours (w/o noise) 0.94 0.79 21.43 4.79 0.985 0.957 0.991 0.895

Table 10. Robustness to noisy SMPL-X on GRAB.

5.7. Speed

When we initialize our method with all bones (Method
ID A2 in Tab. 1 of the main paper, L.651), we observe a
speed of 3.85 seconds per iteration (s/it) during training.



Figure 16. More Animation results on X-Humans (Scans).

Figure 17. More Animation results on X-Humans (RGB-D).

Our final method takes 1.29 s/it (hence the reported speed-
up of 3x). We train on a single RTX 6000 (24 GB) for 24
hours per sequence (see Sec. 2.7.). At inference time, ren-
dering takes roughly 7 seconds per frame, which includes
time for marching cubes and mesh rendering. Please note
that very recently a faster version of SNARF has been pro-
posed [6], which reports a speed-up of 150×. This is a

drop-in replacement for our deformers and will accelerate
our method significantly.

6. Societal Impact Discussion
X-Avatar enables building fully animatable human

avatars from either 3D scans or RGB-D video, which has
great potential in immersive, life-like remote telepresence



and other experiences in AR/VR. The method presented
here is intended for uses that are beneficial to society, e.g.
by bringing people closer together in mixed reality who are
otherwise large distances apart in the real world. However,
we unfortunately cannot rule out that the technology might
be abused for nefarious purposes. Because our method can
animate personalized avatars with poses and facial expres-
sions that are completely unseen, the biggest concern is that
it might be misused to generate deep fakes. Although there
is still a way to go to achieve a level of quality that is indis-
tinguishable from real footage, the rapid progress of recent
years in related fields, such as image generation, may have
fore-shadowed a similar trend in the modelling of 3D hu-
man avatars. We believe that open-sourcing such research
is vital to build a general knowledge about how such models
can be created - this understanding will in turn help to build
counter-measures and detect malicious uses.
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